Commun. Math. Phys. 149, 415-424 (1992)

Deformation Estimates for the Berezin-Toeplitz Quantization

L.A. Coburn*

Department of Mathematics, State University of New York at Buffalo, Buffalo, NY 14214, USA

Received January 29, 1992

Abstract. Deformation estimates for the Berezin-Toeplitz quantization of \mathbb{C}^n are obtained. These estimates justify the description of CCR + \mathscr{K} as a first-order quantum deformation of AP + C_0 , where CCR is the usual C^* -algebra of (boson) canonical commutation relations, \mathscr{K} is the full algebra of compact operators, AP is the algebra of almost-periodic functions and C_0 is the algebra of continuous functions which vanish at infinity.

1. Introduction

We consider the family of Gaussian probability measures

$$d\mu_r(z) = \left(\frac{r}{\pi}\right)^n e^{-r|z|^2} dv(z) \,, \qquad r > 0$$

for $z = (z_1, \ldots, z_n)$ in complex Euclidean space \mathbb{C}^n , dv(z) ordinary Lebesgue measure, $|z|^2 = |z_1|^2 + \ldots + |z_n|^2$. The space of entire $d\mu_r$ -square-integrable functions is denoted by $H^2(d\mu_r) \equiv H^2(\mathbb{C}^n, d\mu_r)$. For g in $L^2(d\mu_r)$, the Berezin-Toeplitz operator $T_q^{(r)}$ is defined on a dense linear subspace of $H^2(d\mu_r)$ by

$$(T_g^{(r)}h)(z) = \int g(w)h(w)e^{rz \cdot w}d\mu_r(w)\,.$$

Here $z \cdot w \equiv z_1 \bar{w}_1 + \ldots + z_n \bar{w}_n$ and $e^{rz \cdot w}$ is the Bergman reproducing kernel for $H^2(d\mu_r)$ so that, for gh in $L^2(d\mu_r)$, $T_g^{(r)}h$ is in $H^2(d\mu_r)$.

The map $g \to T_g^{(r)}$ has been considered by Berezin [Be] and others [Ba, G, Ho] as a "quantization" in which r plays the role of the reciprocal of Planck's constant.

^{*} Research supported by grants of the NSF and the Institut Mittag-Leffler of the Royal Academy of Sweden