A Family of Metrics on the Moduli Space of CP² Instantons

Lutz Habermann

FB Mathematik, Humboldt-Universität-Berlin, PF 1297, Unter den Linden 6, O-1086 Berlin, FRG

Received October 15, 1991; in revised form April 1992

Abstract. A family of Riemannian metrics on the moduli space of irreducible selfdual connections of instanton number k = 1 over \mathbb{CP}^2 is considered. We find explicit formulas for these metrics and deduce conclusions concerning the geometry of the instanton space.

1. Introduction

Let \mathcal{N}^+ be the space of gauge equivalence classes of irreducible self-dual connections on a principal SU(2)-bundle P over a Riemannian 4-manifold M. Define a Riemannian metric g^s on \mathcal{N}^+ for $s \ge 0$ by

$$(g^{s})_{[Z]}(u_{1}, u_{2}) = ((1 + s\Delta_{Z})u_{1}(1 + s\Delta_{Z})u_{2}),$$

where $[Z] \in \mathcal{N}^+$ and (,) denotes the L^2 -product. Then g^0 is the usual L^2 -metric, whereas g^s is induced by a strong Riemannian metric on the orbit space of all irreducible connections on P for s > 0.

Results concerning the L^2 -metric g^0 when M is the standard 4-sphere S^4 and the instanton number k(P) is 1 were obtained by several authors (see [5, 8, 10]). In particular, it was shown that

(i) (\mathcal{N}^+, g^0) is incomplete and has finite diameter and volume.

(ii) The completion of (\mathcal{N}^+, g^0) differs from \mathcal{N}^+ by a set diffeomorphic to S^4 .

Groisser and Parker generalized these results and established some other general properties of g^0 under certain topological assumptions on M and P (cf. [9]).

In [2] we examined the family $\{g^s\}_{s\geq 0}$ in the S^4 example. We showed that (\mathcal{N}^+, q^s) is complete and has infinite diameter and volume for s > 0.

In the present paper we will be concerned with the case that M is \mathbb{CP}^2 and k(P) = 1. Then the moduli space \mathcal{N} of self-dual connections is topologically a cone