The Solution Space of the Unitary Matrix Model String Equation and the Sato Grassmannian

Konstantinos N. Anagnostopoulos,^{1*} Mark J. Bowick^{1*} and Albert Schwarz^{2**}

¹ Physics Department, Syracuse University, Syracuse, NY 13244-1130, USA

² Department of Mathematics, University of California, Davis, CA 95616, USA

Received January 2, 1992

Abstract. The space of all solutions to the string equation of the symmetric unitary one-matrix model is determined. It is shown that the string equation is equivalent to simple conditions on points V_1 and V_2 in the big cell $Gr^{(0)}$ of the Sato Grassmannian Gr. This is a consequence of a well-defined continuum limit in which the string equation has the simple form $[\mathcal{P}, \mathcal{Q}_-] = 1$, with \mathcal{P} and $\mathcal{Q}_- 2 \times 2$ matrices of differential operators. These conditions on V_1 and V_2 yield a simple system of first order differential equations whose analysis determines the space of all solutions to the string equation. This geometric formulation leads directly to the Virasoro constraints L_n $(n \ge 0)$, where L_n annihilate the two modified-KdV τ functions whose product gives the partition function of the Unitary Matrix Model.

1. Introduction

Matrix models form a rich class of quantum statistical mechanical systems defined by partition functions of the form $\int dM \, e^{-\frac{N}{\lambda} \operatorname{tr} V(M)}$, where *M* is an $N \times N$ matrix and the Hamiltonian $\operatorname{tr} V(M)$ is some well defined function of *M*. They were originally introduced to study complicated systems, such as heavy nuclei, in which the quantum mechanical Hamiltonian had to be considered random within some universality class [1, 4].

Unitary Matrix Models (UMM), in which M is a unitary matrix U, form a particularly rich class of matrix models. When V(U) is self adjoint we will call the model symmetric. The simplest case is given by $V(U) = U + U^{\dagger}$ and describes two dimensional quantum chromodynamics [5–7] with gauge group U(N). The partition function of this theory can be evaluated in the large-N (planar) limit in which N is taken to infinity with $\lambda = g^2 N$ held fixed, where g is the gauge coupling. The theory has a third order phase transition at $\lambda_c = 2$ [6]. Below λ_c the eigenvalues $e^{i\alpha_j}$ of U lie within a finite domain about $\alpha = 0$ of the form $[-\alpha_c, \alpha_c]$ with $\alpha_c < \pi$. The

^{*} E-mail: Konstant@suhep.bitnet; Bowick@suhep.bitnet.

^{**} E-mail: Asschwarz@ucdavis.edu