Determinants, Finite-Difference Operators and Boundary Value Problems ${ }^{\star}$

Robin Forman
Department of Mathematics, Rice University, Houston, TX 77251, USA

Received October 10, 1991

Abstract

We relate the determinants of differential and difference operators to the boundary values of solutions of the operators. Previous proofs of related results have involved considering one-parameter families of such operators, showing the desired quantities are equal up to a constant, and then calculating the constant. We take a more direct approach. For a fixed operator, we prove immediately that the two sides of our formulas are equal by using the following simple observation (Proposition 1.3): Let $U \in S U(n, \mathbf{C})$. Write U in block form

$$
U=\left(\begin{array}{ll}
u_{11} & u_{12} \\
u_{21} & u_{22}
\end{array}\right),
$$

where u_{11} and u_{22} are square matrices. Then

$$
\operatorname{det} u_{11}=\overline{\operatorname{det} u_{22}} .
$$

0. Introduction

Motivated by questions in quantum field theory, there has been much recent interest in the problem of calculating the determinant of differential operators (see, for example, [Ra] chapter III). Suppose L is a positive elliptic differential operator acting on sections of a vector bundle over a compact manifold. Then L has a discrete spectrum

$$
\lambda_{1} \leqq \lambda_{2} \leqq \cdots \rightarrow \infty
$$

Various methods have been used to make sense of

$$
\operatorname{det} L "=\Pi \lambda_{i} "
$$

Perhaps the most common method is the zeta-function regularization of Ray and Singer [R-S], in which one defines $\log \operatorname{det} L$ by analytically continuing the function

$$
\sum \lambda_{i}^{-s} \log \lambda_{i}
$$

[^0]
[^0]: * Partially supported by an NSF postdoctoral fellowship

