

Erratum

Proof of Chiral Symmetry Breaking in Strongly Coupled Lattice Gauge Theory

M. Salmhofer and E. Seiler

Max-Planck-Institut für Physik, Föhringer Ring 6, W-8000 München 40, Federal Republic of Germany

Received January 3, 1992

Commun. Math. Phys. 139, 395 (1991)

The "constant" C_n in Theorem 3.11 still has a *m*-dependence; Theorem 3.11 has to be restated as:

For all $m \in \mathcal{W}$ there is a $\kappa(m) > 0$ such that for all $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in \mathbb{Z}^{\vee}$,

$$\langle \sigma^L \rangle^T | \leq \tilde{C}_n B_n(m) e^{-\kappa(m)\vartheta(x_1,\dots,x_n)}, \tag{1}$$

where \tilde{C}_n depends only on n and m_0 (larger than the inverse radius of convergence of the cluster expansion), and

$$B_n(m) = \begin{cases} \max\{1, |\text{Re} m|^{-n}\} & for \quad |m| \le m_0, \\ 1 & for \quad |m| > m_0. \end{cases}$$
(2)

The reason for this is an error in our original proof: the bound $|\langle \sigma^L \rangle| \leq 1$ which we used holds only for real *m*. For general $m \in \mathcal{W}$ with Re $m \neq 0$, the monomer-dimer results of Gruber and Kunz [1] imply only the weaker bound

$$|\langle \sigma^L \rangle| \le |\operatorname{Re} m|^{-|L|}. \tag{3}$$

To prove clustering from this, fix m' > 0 and change the definition of u_L to

$$u_L(m) = \frac{1}{\vartheta(L)} \log\left(\frac{|\langle \sigma^L \rangle^T|}{\tilde{C}(L) \max\left\{1, m'^{-|L|}\right\}}\right),\tag{4}$$

then $u_L(m) \leq 0$ for all *m* with $|\operatorname{Re} m| > m'$, $u_L(m) < 0$ for $|m| > m_0$, and u_L is still subharmonic in *m*, so the Penrose-Lebowitz subharmonicity argument [2] implies $u(m) = \limsup u_L(m) < 0$ for all *m* with $|\operatorname{Re} m| > m'$, as worked out in our paper. Given *m* with $\operatorname{Re} m \neq 0$, Theorem 3.11, as stated above, is then obtained by taking e.g. $m' = \frac{1}{2} |\operatorname{Re} m|$. The proof also implies that $\kappa(m)$ is bounded below as $m \to 0$, $\kappa(m) \geq M |\operatorname{Re} m|$ for $|m| \leq m_0$, where *M* depends only on m_0 .

For real $m \neq 0$ and the two-point function we can get rid of $B_2(m)$:

$$|\langle \sigma_0 \sigma_x \rangle - \langle \sigma_0 \rangle \langle \sigma_x \rangle| \le e^{-\kappa(m)|x|}, \tag{5}$$