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The “constant” C, in Theorem 3.11 still has a m-dependence; Theorem 3.11 has to

be restated as:
For all me W there is a k(m)>0 such that for all neN and x,, ...,x,€Z’,
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where C, depends only on n and m,, (larger than the inverse radius of convergence of
the cluster expansion), and

B,(m)= max {1,[Rem|™"} for |m|<m,,
1 for |m|>m,.
The reason for this is an error in our original proof: the bound |{¢*}| <1 which we

used holds only for real m. For general me % with Re m=+0, the monomer-dimer
results of Gruber and Kunz [1] imply only the weaker bound
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To prove clustering from this, fix m'>0 and change the definition of u; to

i Koty
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then u;(m)=<0 for all m with |Rem|>m', u,(m)<O0 for |m|>m,, and u, is still
subharmonic in m, so the Penrose-Lebowitz subharmonicity argument [2] implies
u(m)=lim sup u;(m)<O0 for all m with |Rem|>m', as worked out in our paper.
Given m with Rem =0, Theorem 3.11, as stated above, is then obtained by taking
e.g. m'=%|Rem|. The proof also implies that x(m) is bounded below as m—0,
k(m)= M |Rem| for |m| <m,, where M depends only on m,,.

For real m+0 and the two-point function we can get rid of B,(m):
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