A Global Formalism for Nonlinear Waves in Conservation Laws ${ }^{\star}$

Eli L. Isaacson ${ }^{1}$, Dan Marchesin ${ }^{\mathbf{2}}$, C. Frederico Palmeira ${ }^{\mathbf{3}}$, and Bradley J. Plohr ${ }^{4}$
${ }^{1}$ Department of Mathematics, P.O. Box 3036 Univ. Station, University of Wyoming, Laramie, WY 82071, USA
E-mail: isaacson@corral.uwyo.edu
${ }^{2}$ Instituto de Matemática Pura e Aplicada and Department of Mathematics, Pontifícia Universidade Católica, 22460 Rio de Janeiro, RJ, Brazil
E-mail: danp@lncc.bitnet
${ }^{3}$ Department of Mathematics, Pontifícia Universidade Católica, 22453 Rio de Janeiro,RJ, Brazil E-mail: fred@Incc.bitnet
${ }^{4}$ Department of Mathematics and of Applied Mathematics and Statistics, State University of New York, Stony Brook, NY 11794-3651, USA
E-mail: plohr@ams.sunysb.edu

Received July 19, 1991; in revised form November 15, 1991

Abstract

We introduce a unifying framework for treating all of the fundamental waves occurring in general systems of n conservation laws. Fundamental waves are represented as pairs of states statisfying the Rankine-Hugoniot conditions; after trivial solutions have been eliminated by means of a blow-up procedure, these pairs form an $(n+1)$-dimensional manifold \mathscr{W}, the fundamental wave manifold. There is a distinguished n-dimensional submanifold of \mathscr{W} containing a single one-dimensonal foliation that represents the rarefaction curves for all families. Similarly, there is a foliation of \mathscr{W} itself that represent shock curves. We identify other n-dimensional submanifolds of \mathscr{W} that are naturally interpreted as boundaries of regions of admissible shock waves. These submanifolds also have one-dimensional foliations, which represent curves of composite waves. This geometric framework promises to simplify greatly the study of the stability and bifurcation properties

[^0]
[^0]: * This work was supported in part by: the NSF/CNPq U.S.-Latin America Cooperative Science Program under Grant INT-8612605; the Institute for Mathematics and its Applications with funds provided by the National Science Foundation; the Air Force Office of Scientific Research under Grant AFOSR 90-0075; the National Science Foundation under Grant 8901884; the U.S. Department of Energy under Grant DE-FG02-90ER25084; the U.S. Army Research Office under Grant DAAL03-89-K-0017; the Financiadora de Estudos e Projetos; the Conselho Nacional de Desenvolvimento Científico e Tecnológica (CNPq); the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ); the Coordenação de Aperfeiçamento de Pessoal de Ensino Superior (CAPES); and the Sociedade Brasileira de Matemática (SBM)

