Decay of Correlations for Certain Quadratic Maps ${ }^{\star}$

L.-S. Young ${ }^{\star \star}$
Department of Mathematics, University of California at Los Angeles, Los Angeles, CA 90024, USA

Received June 17, 1991

Abstract

We prove exponential decay of correlations for (f, μ), where f belongs in a positive measure set of quadratic maps of the interval and μ is its absolutely continuous invariant measure. These results generalize to other interval maps.

Consider a dynamical system generated by a map $f: M \rightarrow M$ preserving a probability measure μ, and let $\varphi, \psi: M \rightarrow \mathbb{R}$ be observables. Mixing properties of the dynamical system are reflected in the decay of correlations between φ and $\psi \circ f^{n}$ as $n \rightarrow \infty$. More precisely, we say that (f, μ) has exponential decay of correlations for functions belonging in a certain class X if there is a number $\tau<1$ such that for every $\varphi, \psi \in X$, there is a constant $C=C(\varphi, \psi)$ such that

$$
\left|\int \varphi \cdot\left(\psi \circ f^{n}\right) d \mu-\int \varphi d \mu \cdot \int \psi d \mu\right| \leqq C \tau^{n} \quad \forall n \geqq 0 .
$$

The main result of this paper is the following:
Theorem. Consider $f_{a}:[-1,1] \bigcirc$ defined by $f_{a}(x)=1-a x^{2}, a \in[0,2]$. Then there is a positive Lebesgue measure set Δ in parameter space such that if $f=f_{a}$ for $a \in \Delta$, then
(1) f has an absolutely continuous invariant measure μ (this is a well known theorem first proved by Yakobson [J]);
(2) (f, μ) has exponential decay of correlations for functions of bounded variation;
(3) the central limit theorem holds for $\left\{\varphi^{\circ} f^{n}\right\}_{n=1,2, \ldots}, \varphi \in B V$.

These results generalize to certain open sets of 1-parameter families of unimodal maps.

Exponential decay of correlations has been proved for primarily two types of dynamical systems: piecewise uniformly expanding maps of the interval with their absolutely continuous invariant measures, and Axiom A diffeomorphisms with their Gibbs states. (See e.g. [HK, Ry1, Ru1, Ru2].) These are by no means the only results. (See e.g. [BS], [Z].)

[^0]
[^0]: \star The results in this paper are announced in the Tagungsbericht of Oberwolfach, June 1990
 *ぇ The author is partially supported by NSF

