Instantons and Mirror K3 Surfaces

Fedor Bogomolov ${ }^{1}$ and Peter J. Braam ${ }^{2}$
${ }^{1}$ Steklov Institute, Moscow, USSR
${ }^{2}$ University of Oxford, Oxford, England and University of Utah, Salt Lake City, USA

Received July 26, 1991

Abstract

The instanton moduli space of a real 4-dimensional torus is an 8-dimensional Calabi-Yau manifold. Associated to this Calabi-Yau manifold are two (singular) K3 surfaces, one a quotient, the other a submanifold of the moduli space; both carry a natural Calabi-Yau metric. They are curiously related in much the same way as special examples of complex 3-dimensional mirror manifolds; however, in our case the "mirror" is present in the form of instanton moduli.

1. Introduction

In the study of connections on a bundle $P \rightarrow \mathbb{T}$ over a Riemannian 4-manifold \mathbb{T} the object of primary interest is the moduli space $\mathscr{M}(P)$ of anti-self-dual connections on P. These moduli spaces inherit various structures from \mathbb{T} : when \mathbb{T} is a projective algebraic variety, $\mathscr{M}(P)$ is quasiprojective, and when \mathbb{T} carries a hyperkähler metric then so does $\mathscr{M}(P)$.

An important class of 4-manifolds are the flat tori, and in [BMT] it was investigated what the structure of $\mathscr{M}(P)$ is when the bundle P on \mathbb{T} satisfies

$$
p_{1}(P)=-4, \quad w_{2}(P) \neq 0, \quad w_{2}(P)^{2}=0 .
$$

It was found that on $\mathscr{M}(P)$ we have a \mathbb{T}-action through translating connections and the quotient $\mathscr{M}=\mathscr{M}(P) / \mathbb{T}$ admits a compactification to a Todorov surface $\overline{\mathscr{M}}=\mathscr{M} \cup \infty$ with a natural hyperKähler metric induced from the L^{2} metric on the space of connections on P. A Todorov surface is a K3 orbifold.

The moduli space \mathscr{M} is not compact because instantons can bubble off, compare [FU], and the crux of the argument is that the hyperKähler metric extends over ∞, as an orbifold metric. The point ∞ is a D_{4} singularity in \bar{M}, and $\overline{\mathscr{M}}$ has another 12 singularities of type A_{2}. The latter arise as quotient singularities for the \mathbb{T}-action on $\mathscr{M}(P)$.

In this paper we shall study a further Todorov surface associated to $\mathscr{M}(P)$. First of all, $\mathscr{M}(P)$ can be compactified to a complex orbifold by adding a torus \mathbb{T}_{∞}

