Communications in Mathematical Physics © Springer-Verlag 1992

A Special Class of Stationary Flows for Two-Dimensional Euler Equations: A Statistical Mechanics Description

E. Caglioti¹, P. L. Lions², C. Marchioro³, and M. Pulvirenti⁴

¹ Dipartimento di Fisica, Università di Roma "La Sapienza", Roma, Italy

² Ceremade, Université Paris-Dauphine, Paris, France

³ Dipartimento di Matematica, Universitá di Roma "La Sapienza", Roma, Italy

⁴ Dipartimento di Matematica, Universitá di L'Aquila, Italy

Received November 6, 1990; in revised form July 16, 1991

Abstract. We consider the canonical Gibbs measure associated to a *N*-vortex system in a bounded domain Λ , at inverse temperature $\tilde{\beta}$ and prove that, in the limit $N \to \infty$, $\tilde{\beta}/N \to \beta$, $\alpha N \to 1$, where $\beta \in (-8\pi, +\infty)$ (here α denotes the vorticity intensity of each vortex), the one particle distribution function $\varrho^N = \varrho^N(x)$, $x \in \Lambda$ converges to a superposition of solutions ϱ_{β} of the following Mean Field Equation:

$$\begin{cases} \varrho_{\beta}(x) = \frac{e^{-\beta\psi}}{\int_{A} e^{-\beta\psi}}; & -\Delta\psi = \varrho_{\beta} \text{ in } \Lambda \\ \psi|_{\partial A} = 0. \end{cases}$$
(A.1)

Moreover, we study the variational principles associated to Eq. (A.1) and prove that, when $\beta \rightarrow -8\pi^+$, either $\varrho_{\beta} \rightarrow \delta_{x_0}$ (weakly in the sense of measures) where x_0 denotes an equilibrium point of a single point vortex in Λ , or ϱ_{β} converges to a smooth solution of (A.1) for $\beta = -8\pi$. Examples of both possibilities are given, although we are not able to solve the alternative for a given Λ . Finally, we discuss a possible connection of the present analysis with the 2-D turbulence.

Table of Contents

1.	Introduction					502
2.	Formulation of the Statistical Mechanics Problem					505
3.	Estimates on the Correlation Functions					508
4.	Proof of the Convergence Theorem					513
5.	Solutions of the Mean-Field Equation with Radial Symmetry					513
6.	The Mean Field Equation in \mathbb{R}^2					514
7.	Some Properties of Solutions of the Mean-Field Equations .					516

^{*} Work partially supported by CNR (GNFM) and MPI