

Positive Lyapunov Exponents for Schrödinger Operators with Quasi-Periodic Potentials

Eugene Sorets and Thomas Spencer

Institute for Advanced Study, Princeton, NJ 08540, USA

Received February 11, 1991; in revised form May 6, 1991

Abstract. We present a new, simple way to estimate the rate of exponential growth (Lyapunov exponent) of solutions of the finite-difference Schrödinger equation:

$$((H-E)\psi)(n) \stackrel{\text{def}}{=} - \left[\psi(n+1) + \psi(n-1)\right] + \left[\lambda f(\alpha n + \theta)\right]\psi(n).$$

Here f is a non-constant real-analytic function of period 1 and α is irrational. For λ large we prove that the Lyapunov exponent is positive for every energy E in the spectrum of H and a.e. θ . In particular, the absolutely continuous spectrum of H is empty. In the continuum we study the quasi-periodic operator on $L^2(R)$

$$H = -\frac{d^2}{dx^2} - K^2 [\cos x + \cos(\alpha x + \theta)]$$

for large K and show that for wide intervals of low energies the Lyapunov exponent is positive. The main idea, which originated from M. Herman's subharmonic argument [11], is to deform the phase θ to the complex plane. This enables us to avoid small denominator problems by moving them off the axis, making estimates much easier to perform. We recover the information for real θ using an elementary extension of Jensen's formula (subharmonicity).

Table of Contents

1.	Introduction	44
2.	Background 54	46
3.	The Lattice Case	48
4.	Differential Operator H_c	51
5.	Decay of $G_A(x, y)$	56
6.	Bound on Arg	63
A.	Appendix	65
A.1	Proof of Proposition 3	65
Ref	Serences 50	66