Commun. Math. Phys. 140, 399-414 (1991)

Quantum Group A_{∞}

Serge Levendorskii¹ and Yan Soibelman²

¹ Rostov Institute for National Economy, SU-344798 Rostov-on-Don, USSR

² Rostov State University, SU-344006 Rostov-on-Don, USSR

Received January 15, 1991

Abstract. The quantum groups gl_{∞} and A_{∞} are constructed. The representation theory of these algebras is developed and the universal *R*-matrix is presented.

0.1. The Lie algebra gl_{∞} and its extension A_{∞} play an important role in the theory of nonlinear equations [DJKM]. They are of interest as an example of Kac-Moody-Lie algebras of infinite type [K, FF]. Therefore it is natural to ask: what are the quantum analogues of these algebras in the sense of the quantum groups theory of Drinfeld [D1]? The answer is trivial for $gl_{\infty} = \lim_{n \to \infty} gl_n$, but this is not the case for A_{∞} . Some non-triviality is due tot the fact

that there is no Lie algebra gl_{∞} in the quantum group case [we have the quantized universal enveloping algebra $U_h(gl_{\infty})$ only]. Hence one must analyse the completion of gl_{∞} and the central extension of the corresponding algebra \overline{gl}_{∞} in terms of $U_h(gl_{\infty})$ only. Moreover we need the Hopf Algebra structure in $U_h(A_{\infty})$. This is essential in the case h = 0 already, because, for example, the well-known KP hierarchy is related to the equations for the orbit of highest vector in $L(\Lambda_0) \otimes L(\Lambda_0)$ where $L(\Lambda_0)$ is the basic representation of A_{∞} [K, Chap. 14]. For the same reason we want to obtain $U_h(A_{\infty})$ as the quasitriangular topological Hopf algebra [D1].

The purpose of the paper is to construct $U_h(gl_{\infty})$ and $U_h(A_{\infty})$ as quasitriangular topological Hopf algebras and investigate the representation theory of these algebras. Some results along this lines have been obtained by Hayashi in [H]. Note that there are no constructions of $U_h(gl_{\infty})$ and $U_h(A_{\infty})$ as quantum groups in his paper.

0.2. Let us describe the contents. In Sect. 1 we construct the Hopf algebra $U_h(gl_{\infty})$. This is the quantum analogue of gl_{∞} . The representations of $U_h(gl_{\infty})$ in the spaces of sequences and (quantum) semi-infinite forms are given in Sect. 2. The Hopf algebra $U_h(A_{\infty})$ (and some related algebras) is constructed in Sect. 3. This construction is more complicated than in the non-quantum case [K]. The representation theory of $U_h(A_{\infty})$ is presented in Sect. 4. Our class