Quantum Yang-Mills on a Riemann Surface

Dana S. Fine*
Department of Mathematics, The University of Massachusetts at Dartmouth, North Dartmouth, MA 02747, USA

Received December 10, 1990; in revised form March 14, 1991

Abstract

We obtain the quantum expectations of gauge-invariant functions of the connection on a $G=S U(N)$ product bundle over a Riemann surface of genus g. We show that the space $\mathscr{A} / \mathscr{G}_{m}$ of connections modulo those gauge transformations which are the identity at one point is itself a principal bundle with affine linear fiber. The base space $\operatorname{Path}^{2 g} G$ consists of $2 g$-tuples of paths in G subject to a relation on their endpoint values. Quantum expectations are iterated path integrals over first the fiber then over $\operatorname{Path}^{2 g} G$, each with respect to the push-forward to $\mathscr{A} / \mathscr{G}_{m}$ of the measure $e^{-S(A)} \mathscr{D} A$. Here, $S(A)$ denotes the Yang-Mills action on \mathscr{A}. We exhibit a global section of $\mathscr{A} / \mathscr{G}_{m}$ to define a choice of origin in each fiber, relative to which the measure on the fiber is Gaussian. The induced measure on Path $^{2 g} G$ is the product of Wiener measures on the component paths, conditioned to preserve the endpoint relation. Conformal transformations of the metric on M act by reparametrizing these paths. We explicitly compute the partition function in the general case and the expectations of functions of certain products of Wilson loops in the case $g=1$.

Introduction

In [2], we treated Yang-Mills on S^{2}, deriving the quantum expectation of a gauge-invariant function of the connection. To do so, we interpreted the path intergal as an integral with respect to a measure μ on $\mathscr{A} / \mathscr{G}_{m}$, the space of connections modulo gauge transformations which are the identity at a point m . We showed that $\mathscr{A} / \mathscr{G}_{m}$ fibers over ΩG, based loops in the symmetry group, and we formally decomposed μ into a measure on the fiber and a measure on the base.

Sengupta [5] treats the same problem from the perspective of stochastic parallel transports, as developed for Yang-Mills on R^{2} in Gross, King and Sengupta [4]. His results and those of [2] agree where they overlap. In a future paper, we intend to check for further agreement.

[^0]
[^0]: * Research supported in part by DOE grant DE-FGO2-88ER25066

