Anomalies and Curvature of W Manifolds

C. N. Pope^{1*}, L. J. Romans^{2*}, E. Sezgin¹ and X. Shen¹

¹ Center for Theoretical Physics, Texas A&M University, College Station, TX 77843-4242, USA
² Department of Physics, University of Southern California, Los Angeles, CA 90089-0484, USA

Received December 4, 1990

Abstract. We study the holomorphic structure of certain complex manifolds associated with W_{∞} algebras, namely, the flag manifolds W_{∞}/T_{∞} and $W_{1+\infty}/T_{1+\infty}$, and the spaces $W_{\infty}/S L(\infty, R)$ and $W_{1+\infty}/G L(\infty, R)$, where T_{∞} and $T_{1+\infty}$ are the maximal tori in W_{∞} and $W_{1+\infty}$. We compute their Ricci curvature and show how the results are related to the anomaly-freedom conditions for W_{∞} and $W_{1+\infty}$. We discuss the relation of these manifolds with extensions of universal Teichmüller space.

1. Introduction

An important problem in string theory is the search for a better understanding of its geometrical underpinnings, in the spirit of the beautiful interpretation of general relativity in terms of Riemannian geometry. It has been argued that a natural arena for addressing such geometrical issues is provided by the study of the manifold $\mathcal{M} \equiv \text{diff}(S^1)/S^1$ of complex structures on loop space related by reparametrisations [1]. This remarkable manifold proves to possess a natural Kähler structure [1], and it has been found that many statements concerning the consistency of string theory can be reformulated in terms of geometric data for \mathcal{M} or related structures [1-5]. For example, the condition of nilpotency for the BRST charge Q (required for quantisation in the BRST formalism) is replaced by the requirement that a certain vector bundle over \mathcal{M} have vanishing Ricci curvature [1,2].

In this paper, we show that this geometrical formalism admits very natural extensions when one replaces the algebra $diff(S^1)$ (essentially the centreless Virasoro algebra) by certain higher-spin extended algebras which have been

^{*} Supported in part by the U.S. Department of Energy, under grant DE-AS05-81ER40039

^{**} Supported in part by the U.S. Department of Energy, under grant DE-FG03-84ER40168