Unitary Evolutions and Horizontal Lifts in Quantum Stochastic Calculus

David Applebaum
Department of Mathematics, Statistics and Operations Research, Nottingham Polytechnic, Burton Street, Nottingham, NG1 4BU, England

Received July 30, 1989; in revised form January 18, 1991

Abstract

Unitarity is proved for a class of solutions of quantum stochastic differential equations with unbounded coefficients. The resulting processes are then used to construct algebraic quantum diffusions. Applications include an existence proof for a class of diffusions on the non-commutative two-torus and a geometric interpretation for diffusions driven by the classical Poisson process.

1. Introduction

Let h_{0} be a complex, separable Hilbert space and Γ be boson Fock space over $L^{2}([0, \infty))$. A major role in the development of quantum stochastic calculus has been played by processes $U=(U(t), t \geqq 0)$ which arise as the solutions of the following linear stochastic differential equation on $h_{0} \otimes \Gamma$:

$$
\begin{align*}
d U & =U\left(L_{1} \otimes d A^{\dagger}+L_{2} \otimes d \Lambda+L_{3} \otimes d A+L_{4} \otimes I d t\right) \\
U(0) & =I \tag{1.1}
\end{align*}
$$

where $L_{j} \in B\left(h_{0}\right)(1 \leqq j \leqq 4)$ and A^{\dagger}, Λ and A are the processes of creation, conservation and annihilation in Γ (respectively) ($[13,18]$). We note that the coefficients $L_{j}(1 \leqq j \leqq 4)$ do not here depend on time.

Of particular importance are the sub-class of solutions to (1.1) where the algebraic relations between the L_{j} 's are such that U is unitary operator valued. These unitary processes have found many applications including the construction of Markov dilations of quantum dynamical semigroups ($[13,14]$), the description of quantum processes with stationary and independent increments over graded *-bialgebras [1] and the representation of time-ordered stochastic product integrals [11].

To the extent that these unitary processes may be regarded as solutions of a "Schrödinger equation in the presence of noise" [18], it is clear that the case where the L_{j} 's are no longer bounded will be of great practical interest. So far, however, although existence of solutions to (1.1) was established in [13] there has been no

