Commun. Math. Phys. 140, 15-41 (1991)

Exponentially Small Adiabatic Invariant for the Schrödinger Equation*

A. Joye¹ and Ch-Ed. Pfister²

¹ Département de Physique, Ecole Polytechnique Fédérale, CH-1015 Lausanne, Switzerland
² Département de Mathématiques, Ecole Polytechnique Fédérale, CH-1015 Lausanne, Switzerland

Received July 7, 1990; in revised form December 1, 1990

Abstract. We study an adiabatic invariant for the time-dependent Schrödinger equation which gives the transition probability across a gap from time t' to time t. When the hamiltonian depends analytically on time, and $t' = -\infty$, $t = +\infty$ we give sufficient conditions so that this adiabatic invariant tends to zero exponentially fast in the adiabatic limit.

1. Introduction

Let $H(t), t \in \mathbb{R}$, be a self-adjoint operator on a Hilbert space \mathscr{H} . We study the time-dependent Schrödinger equation in the adiabatic limit, i.e.

$$i\varepsilon \frac{\partial}{\partial t}\varphi(t) = H(t)\varphi(t), \quad t \in \mathbb{R}$$
 (1.1)

when $\varepsilon \rightarrow 0$. The self-adjoint operator H(t) satisfies three conditions.

I. Self-Adjointness and Analyticity. There exists a band S_a in the complex plane, $S_a = \{t + is: |s| < a\}$, and a dense domain $D \subset \mathscr{H}$ such that for each $z \in S_a$, H(z) is a closed operator defined on $D, H(z)\varphi$ is holomorphic on S_a for each $\varphi \in D$ and $H(z)^* = H(\overline{z})$. Moreover we suppose that H(t) is bounded from below for $t \in \mathbb{R}$.

II. Behaviour at Infinity. There exist two self-adjoint operators H^+ and H^- , bounded from below and defined on D, two positive constants C and α such that for all $\varphi \in D$ and |t| large enough

$$\sup_{|s| < a} \| (H(t+is) - H^+) \varphi \| \leq \frac{C}{(1+|t|)^{1+\alpha}} (\|\varphi\| + \|H^+\varphi\|), \quad t > 0$$

^{*} Supported by Fonds National Suisse de la Recherche, Grant 2000-5.600