Commun. Math. Phys. 139, 83-101 (1991)

Microcanonical Distributions for Lattice Gases

Jean-Dominique Deuschel¹, Daniel W. Stroock^{2,*}, and Hans Zessin³

¹ Mathematics, E.T.H. Zentrum, CH-8092 Zurich, Switzerland

² M.I.T., rm. 2-272, Cambridge, MA 02140, USA

³ Mathematik, Universität Bielefeld, W-4900 Bielefeld, FRG

Received October 17, 1990; in revised form November 15, 1990

Abstract. In this article, a large deviation principle (cf. Theorem 1.3) for the empirical distribution functional is applied to prove a rather general version of Boltzmann's principle (cf. Theorem 3.5) for models with shift-invariant, finite range potentials. The final section contains an application of these considerations to the two dimensional Ising model at sub-critical temperature.

1. A Large Deviation Principle for Lattice Systems

In this section we will prove a large deviation theorem for families of random variables indexed by points on a square lattice. (Related earlier results in this direction can be found in [C, F0, and O].) Thus, let \mathbb{Z}^d be the *d*-dimensional square lattice. We will write $\Lambda \subset \subset \mathbb{Z}^d$ if Λ is a non-empty finite subset of \mathbb{Z}^d and use $|\Lambda| \in \mathbb{Z}^+$ to denote the cardinality of Λ . Also, for $R \in \mathbb{Z}^+$ and $\Lambda \subset \subset \mathbb{Z}^d$, we define

$$\Lambda(R) \equiv \{\mathbf{k} \in \mathbb{Z}^d : |\mathbf{k} - \Lambda| \leq R\} \text{ and } \partial_R \Lambda \equiv \Lambda(R) \setminus \Lambda$$

to be, respectively, the *R*-hull and *R*-boundary of *A*. (Throughout, $|\mathbf{k}| \equiv \max_{i \in \mathcal{N}} |k_i|$.)

Next, let *E* be a Polish space, \mathscr{B}_E the Borel field over *E*, and $\Omega = E^{\mathbb{Z}^d}$. We give Ω the product topology, and use \mathscr{B}_Ω to denote the associated Borel field over Ω . Given a non-empty $\Lambda \subseteq \mathbb{Z}^d$ and $\mathbf{x} \in \Omega, \mathbf{x}_A$ will denote the element of E^A obtained by restricting \mathbf{x} to Λ, \mathscr{B}_A is the σ -algebra over Ω generated by the projection map $\mathbf{x} \in \Omega \to \mathbf{x}_A \in E^A$ (of course, $\mathscr{B}_\Omega = \mathscr{B}_{\mathbb{Z}^d}$), $B_A(\Omega; \mathbb{R})$ is the set of bounded \mathbb{R} -valued, \mathscr{B}_A -measurable functions on Ω , and $C_{A,b}(\Omega; \mathbb{R})$ is the subset of continuous elements of $B_A(\Omega; \mathbb{R})$. When $\Lambda = \mathbb{Z}^d$, we will simply write $B(\Omega; \mathbb{R})$ for $B_{\mathbb{Z}^d}(\Omega; \mathbb{R})$ and $C_b(\Omega; \mathbb{R})$

^{*} The first two authors acknowledge support from, respectively, the grants NSF DMS-8802667 and NSF DMS-8913328 & DAAL 03-86-K-0171