$\left(Z_{N} \times\right)^{n-1}$ Generalization of the Chiral Potts Model

V. V. Bazhanov, R. M. Kashaev, V. V. Mangazeev, and Yu. G. Stroganov
Institute for High Energy Physics, Protvino, Moscow Region, USSR

Received October 15, 1990

Abstract

We show that the R-matrix which intertwines two n-by- N^{n-1} state cyclic L-operators related with a generalization of $U_{q}(s l(n))$ algebra can be considered as a Boltzmann weight of four-spin box for a lattice model with two-spin interaction just as the R-matrix of the checkerboard chiral Potts model. The rapidity variables lie on the algebraic curve of the genus $g=N^{2(n-1)}((n-1) N-n)+1$ defined by $2 n-3$ independent moduli. This curve is a natural generalization of the curve which appeared in the chiral Potts model. Factorization properties of the L-operator and its connection to the SOS models are also discussed.

0. Introduction

As it is observed in [1] the chiral Potts model [2-4] can be considered as a part of some new algebraic structure related to the six vertex R-matrix. In particular, the high genus algebraic relations among the Boltzmann weights of the chiral Potts model arise as a condition of the existence of an intertwining operator for two different representations of some quadratic Hopf algebra [5-7] which generalizes the $U_{q}(s l(2))$ algebra.

It is natural to make an attempt to find new solvable lattice models whose Boltzmann weights obey high genus algebraic relations generalizing the results of [1] for the case of other R-matrices.

This program for the case of the three state R-matrix of [8] which is related to the $U_{q}(s l(3))$ algebra at $q^{2 N}=1$ has been partially realized in [9, 10].

In the present paper we extend the result of $[9,10]$. We construct an n-by- $N^{(n-1)}$ state cyclic L-operator related with an n-state R-matrix of [8] and find explicitly the corresponding $N^{(n-1)}$-state R-matrix. This result is described below.

Consider an oriented square lattice \mathscr{L} and its medial lattice \mathscr{L}^{\prime} (shown in Fig. 1 by solid and dashed lines, respectively). The oriented vertical (horizontal) lines of \mathscr{L}^{\prime} carry rapidity variables $p, p^{\prime}\left(q, q^{\prime}\right)$ in alternating order (note that the orientations of rapidity lines shown by open arrows alternate, too). The edges of

