Commun. Math. Phys. 137, 519-531 (1991)

An Example of a Generalized Brownian Motion

Marek Bożejko¹ and Roland Speicher²

¹ Instytut Matematyczny, Uniwersytet Wrocławski, Plac Grunwaldzki 2/4, PL-50-384 Wrocław, Poland

² Institut für Angewandte Mathematik, Universität Heidelberg, Im Neuenheimer Feld 294, W-6900 Heidelberg, Federal Republic of Germany

Received July 1, 1990; in revised form October 12, 1990

Abstract. We present an example of a generalized Brownian motion. It is given by creation and annihilation operators on a "twisted" Fock space of $L^2(\mathbb{R})$. These operators fulfill (for a fixed $-1 \le \mu \le 1$) the relations $c(f)c^*(g) - \mu c^*(g)c(f) = \langle f, g \rangle 1$ ($f, g \in L^2(\mathbb{R})$). We show that the distribution of these operators with respect to the vacuum expectation is a generalized Gaussian distribution, in the sense that all moments can be calculated from the second moments with the help of a combinatorial formula. We also indicate that our Brownian motion is one component of an *n*-dimensional Brownian motion which is invariant under the quantum group $S_v U(n)$ of Woronowicz (with $\mu = v^2$).

1. Introduction

We will present a representation of the relations

$$c(f)c^*(g) - \mu c^*(g)c(f) = \langle f, g \rangle 1 \qquad (f, g \in L^2(\mathbb{R}))$$

for a fixed μ with $-1 \leq \mu \leq 1$ on a "twisted" Fock space (not to be confused with the twisted Fock space of Pusz and Woronowicz [PWo]). There are at least three reasons for studying these relations:

i) They provide an interpolation between the bosonic and fermionic relations. Independently from our work, Greenberg [Gre] proposed the same relations as a first (non-relativistic) field theory that allows small violations of the exclusion principle (i.e. of Fermi statistics) or of Bose statistics.

ii) They give an example of a generalized Brownian motion.

iii) They exhibit a relation with the twisted $S_v U(n)$ of Woronowicz [Wor1, Wor2]: the Brownian motion of ii) can be considered as one component of an *n*-dimensional Brownian motion which is $S_v U(n)$ -invariant. This also shows how the twisted creation and annihilation operators of [PWo] (appearing in the second quantization procedure based upon the twisted $S_v U(n)$) arise in a central limit theorem.