An Example of a Generalized Brownian Motion

Marek Bożejko ${ }^{1}$ and Roland Speicher ${ }^{2}$
${ }^{1}$ Instytut Matematyczny, Uniwersytet Wrocławski, Plac Grunwaldzki 2/4, PL-50-384 Wrocław, Poland
${ }^{2}$ Institut für Angewandte Mathematik, Universität Heidelberg, Im Neuenheimer Feld 294, W-6900 Heidelberg, Federal Republic of Germany

Received July 1, 1990; in revised form October 12, 1990

Abstract

We present an example of a generalized Brownian motion. It is given by creation and annihilation operators on a "twisted" Fock space of $L^{2}(\mathbb{R})$. These operators fulfill (for a fixed $-1 \leqq \mu \leqq 1$) the relations $c(f) c^{*}(g)-\mu c^{*}(g) c(f)$ $=\langle f, g\rangle 1\left(f, g \in L^{2}(\mathbb{R})\right)$. We show that the distribution of these operators with respect to the vacuum expectation is a generalized Gaussian distribution, in the sense that all moments can be calculated from the second moments with the help of a combinatorial formula. We also indicate that our Brownian motion is one component of an n-dimensional Brownian motion which is invariant under the quantum group $S_{v} U(n)$ of Woronowicz (with $\mu=v^{2}$).

1. Introduction

We will present a representation of the relations

$$
c(f) c^{*}(g)-\mu c^{*}(g) c(f)=\langle f, g\rangle 1 \quad\left(f, g \in L^{2}(\mathbb{R})\right)
$$

for a fixed μ with $-1 \leqq \mu \leqq 1$ on a "twisted" Fock space (not to be confused with the twisted Fock space of Pusz and Woronowicz [PWo]). There are at least three reasons for studying these relations:
i) They provide an interpolation between the bosonic and fermionic relations. Independently from our work, Greenberg [Gre] proposed the same relations as a first (non-relativistic) field theory that allows small violations of the exclusion principle (i.e. of Fermi statistics) or of Bose statistics.
ii) They give an example of a generalized Brownian motion.
iii) They exhibit a relation with the twisted $S_{v} U(n)$ of Woronowicz [Wor 1, Wor 2]: the Brownian motion of ii) can be considered as one component of an n-dimensional Brownian motion which is $S_{v} U(n)$-invariant. This also shows how the twisted creation and annihilation operators of [PWo] (appearing in the second quantization procedure based upon the twisted $S_{v} U(n)$) arise in a central limit theorem.

