Communications in Mathematical Physics © Springer-Verlag 1991

A Renormalization Group Analysis of the Kosterlitz–Thouless Phase

J. Dimock¹ and T. R. Hurd^{2,*}

¹ Department of Mathematics, SUNY at Buffalo, Buffalo, NY 14214, USA

² Department of Mathematics, McMaster University, Hamilton, Ontario, L8S 4K1, Canada

Received July 5, 1990

Abstract. We consider a classical Coulomb gas with a short distance cutoff in two dimensions; equivalently a Sine–Gordon field theory. For low temperature β^{-1} and low activity z the gas is in a multipole phase, the Kosterlitz–Thouless phase. For $\beta > 8\pi$ and z sufficiently small we give a complete renormalization group analysis for this phase and show that the flow of the effective measures is toward a free field (infrared asymptotic freedom). This should lead to control over the long distance behavior of the theory.

1. Introduction

A classical Coulomb gas in two dimensions with inverse temperature β and activity z is defined by the grand canonical partition function

$$\sum_{n=0}^{\infty} z^n / n! \left[\sum_{q_1, \dots, q_n} \int dx_1 \cdots dx_n \exp\left(-\beta/2 \sum_{i,j} q_i q_j v(x_i - x_j) \right) \right], \tag{1.1}$$

where the sum is over charges $q_i = \pm 1$. The potential v(x - y) is the inverse Laplacian $(\Delta^{-1})(x, y)$ with a short distance cutoff (essential for β large). An equivalent expression is as a Sine-Gordon field theory, namely

$$\int \exp(-2z \int \cos \varphi(x) dx) d\mu_{\beta \nu}(\varphi), \qquad (1.2)$$

where $\mu_{\beta v}$ is a massless Gaussian measure with covariance βv .

For a dilute gas (z small) there is a phase transition as the temperature is lowered. At high temperatures (β small) there is a plasma phase with Debye screening and exponential decay of correlations. This was rigorously established by Brydges and Federbush [BF] and Yang [Y]. At low temperatures (β large) there is a multipole phase characterized by a power law decay of correlations. This

^{*} Research supported by the Natural Sciences and Engineering Research Council