An Algorithm for Detecting Abelian Monopoles in $\boldsymbol{S U}_{\mathbf{2}}$-Valued Lattice Gauge-Higgs Systems

Anthony V. Phillips ${ }^{1, \star}$ and David A Stone ${ }^{2, \star \star}$
${ }^{1}$ Mathematics Department, SUNY at Stony Brook, Stony Brook, NY 11794, USA
${ }^{2}$ Mathematics Department, Brooklyn College of CUNY, Brooklyn NY 11210, USA

Received March 20, 1990; in revised form September 11, 1990

Abstract

We present an algorithm which calculates the monopole number of an $S U_{2}$-valued lattice gauge field, together with a lattice Higgs field, on a simplicial lattice of dimension $\geqq 3$. The calculation is gauge invariant. The expected value of the monopole density (for a fixed Higgs field) does not depend on the Higgs field.

Introduction

This paper addresses the problem of locating the abelian monopoles of an $S U_{2}$-valued lattice gauge-Higgs field system on a complex of dimension $\geqq 3$. In the smooth case, these phenomena have been extensively studied from the analytic and algebraic-geometric side (for example, $[2-6,9,16]$) but we believe a more local and topological analysis, besides being of intrinsic interest, will be useful in the study of monopoles as vacuum fluctuations, especially by lattice-theoretic methods as in [7]. A summary of this material appeared in [12].

We present an algorithm which, given a generic $S U_{2}$-valued lattice gauge field \mathbf{u}, and a lattice Higgs field \mathbf{e}, defined on a locally ordered simplicial lattice Λ, associates to each oriented 3-simplex $\Delta \in \Lambda$ an integer $\mu_{\mathrm{u}, \mathrm{e}}(\Delta)$, the monopole number of the pair \mathbf{u}, e in Δ.

The lattice gauge field \mathbf{u}, as usual, assigns to every oriented 1 -simplex $\langle i j\rangle \in \Lambda$ an $S U_{2}$-element $u_{i j}$, with $u_{j i}=u_{i j}^{-1}$, and the lattice Higgs field \mathbf{e} assigns to each vertex $\langle i\rangle \in \Lambda$ a unit vector $e_{i} \in \mathbf{R}^{3}$. If we change gauge via a family $\mathbf{g}=\left\{g_{i}:\langle i\rangle \in \Lambda\right\}$ of elements of $S U_{2}$, then in the new gauge \mathbf{u} becomes the lattice gauge field $\mathbf{g u g}^{-1}$ which assigns $g_{i} u_{i j} g_{j}^{-1}$ to $\langle i j\rangle$, and \mathbf{e} transforms under the adjoint action to $\mathbf{g e g}^{-1}$, which assigns $g_{i} * e_{i}=g_{i} e_{i} g_{i}^{-1}$ to $\langle i\rangle$, identifying $S U_{2}$ with the unit quaternions and $\mathbf{R}^{3}=\{a \mathbf{i}+b \mathbf{j}+c \mathbf{k}\}$ with the pure imaginary quaternions as usual.

[^0]
[^0]: * Partially supported by NSF grants DMS 8607168 and DMS 8907753
 ** Partially supported by PSC-CUNY and by NSF grant DMS 8805485

