An Algorithm for Detecting Abelian Monopoles in SU_2 -Valued Lattice Gauge-Higgs Systems

Anthony V. Phillips^{1,*} and David A Stone^{2,**}

¹ Mathematics Department, SUNY at Stony Brook, Stony Brook, NY 11794, USA ² Mathematics Department, Brooklyn College of CUNY, Brooklyn NY 11210, USA

Received March 20, 1990; in revised form September 11, 1990

Abstract. We present an algorithm which calculates the monopole number of an SU_2 -valued lattice gauge field, together with a lattice Higgs field, on a simplicial lattice of dimension ≥ 3 . The calculation is gauge invariant. The expected value of the monopole density (for a fixed Higgs field) does not depend on the Higgs field.

Introduction

This paper addresses the problem of locating the abelian monopoles of an SU_2 -valued lattice gauge-Higgs field system on a complex of dimension ≥ 3 . In the smooth case, these phenomena have been extensively studied from the analytic and algebraic-geometric side (for example, [2-6, 9, 16]) but we believe a more local and topological analysis, besides being of intrinsic interest, will be useful in the study of monopoles as vacuum fluctuations, especially by lattice-theoretic methods as in [7]. A summary of this material appeared in [12].

We present an algorithm which, given a generic SU_2 -valued lattice gauge field **u**, and a lattice Higgs field **e**, defined on a locally ordered simplicial lattice Λ , associates to each oriented 3-simplex $\Delta \in \Lambda$ an integer $\mu_{u,e}(\Delta)$, the monopole number of the pair **u**, **e** in Δ .

The lattice gauge field **u**, as usual, assigns to every oriented 1-simplex $\langle ij \rangle \in \Lambda$ an SU_2 -element u_{ij} , with $u_{ji} = u_{ij}^{-1}$, and the lattice Higgs field **e** assigns to each vertex $\langle i \rangle \in \Lambda$ a unit vector $e_i \in \mathbb{R}^3$. If we change gauge via a family $\mathbf{g} = \{g_i : \langle i \rangle \in \Lambda\}$ of elements of SU_2 , then in the new gauge **u** becomes the lattice gauge field \mathbf{gug}^{-1} which assigns $g_i u_{ij} g_j^{-1}$ to $\langle ij \rangle$, and **e** transforms under the adjoint action to \mathbf{geg}^{-1} , which assigns $g_i * e_i = g_i e_i g_i^{-1}$ to $\langle i \rangle$, identifying SU_2 with the unit quaternions and $\mathbb{R}^3 = \{a\mathbf{i} + b\mathbf{j} + c\mathbf{k}\}$ with the pure imaginary quaternions as usual.

^{*} Partially supported by NSF grants DMS 8607168 and DMS 8907753

^{**} Partially supported by PSC-CUNY and by NSF grant DMS 8805485