Generalized Chiral Potts Models and Minimal Cyclic Representations of $\boldsymbol{U}_{\boldsymbol{q}}(\hat{\mathfrak{g}}(\boldsymbol{n}, \mathrm{C}))$

Etsuro Date ${ }^{1}$, Michio Jimbo ${ }^{2}$, Kei Miki, ${ }^{3 \star}$ and Tetsuji Miwa ${ }^{4}$
${ }^{1}$ Department of Mathematical Science, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
${ }^{2}$ Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606, Japan
${ }^{3}$ Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606, Japan
${ }^{4}$ Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan

Received September 11, 1990; in revised form October 15, 1990

Abstract

We present for odd N a construction of the N^{n-1}-state generalization of the chiral Potts model proposed recently by Bazhanov et al. The Yang-Baxter equation is proved.

1. Introduction

The discovery of the chiral Potts model [1-4] opened a new phase in the theory of Yang-Baxter equations (YBE). It gave the first example of an R matrix (=solution to YBE) whose spectral parameters live on an algebraic variety other than \mathbf{P}^{1} or an elliptic curve. Through the latest developments [5-8] it has become apparent that quantum groups at roots of 1 should lead to this type of R matrices. Because of the technical complexity, this program has been worked out so far only in a few simple examples. Besides the chiral Potts model, which is related to $U_{q}(\hat{\mathfrak{s l}}(2, \mathbf{C}))$, these are the cases corresponding to $U_{q}(\hat{\mathfrak{s} l}(3, \mathbf{C}))$ ([7] for $q^{3}=1$, [9] for $q^{4}=1$) or $U_{q}\left(A_{2}^{(2)}\right)$ [8]. In a recent paper [10] Bazhanov et al. proposed a generalization of the chiral Potts model related to N^{n-1} dimensional irreducible representations of $U_{q}(\hat{\mathfrak{s} l}(n, \mathbf{C}))$ at $q^{N}=1$. The aim of this paper is to give a proof to their conjecture.

Let us formulate the problem more precisely. Throughout the paper we fix a primitive $N^{\text {th }}$ root of unity q, with N an odd integer $\geqq 3$. We shall deal with a Hopf algebra \tilde{U}_{q} (essentially the quantum double of a "Borel" subalgebra of $U_{q}(\hat{\mathfrak{g} l}(n, \mathbf{C}))$) [8]. As an algebra \widetilde{U}_{q} is a trivial extension of $U_{q}(\hat{\mathfrak{g} l}(n, \mathbf{C}))$ by central elements, with the comultiplication being twisted by them. In this paper

[^0]
[^0]: * Fellow of the Japan Society for the Promotion of Science for Japanese Junior Scientists

