

© Springer-Verlag 1991

Combinatorics of Representations of $U_q(\mathfrak{sl}(n))$ at q = 0

Michio Jimbo¹, Kailash C. Misra²*, Tetsuji Miwa³ and Masato Okado⁴

¹ Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606, Japan

² Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA

³ Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan

⁴ Department of Mathematical Science, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan

Received August 7, 1990

Abstract. The q = 0 combinatorics for $U_q(\widehat{\mathfrak{sl}}(n))$ is studied in connection with solvable lattice models. Crystal bases of highest weight representations of $U_q(\widehat{\mathfrak{sl}}(n))$ are labelled by paths which were introduced as labels of corner transfer matrix eigenvectors at q = 0. It is shown that the crystal graphs for finite tensor products of *l*-th symmetric tensor representations of $U_q(\mathfrak{sl}(n))$ approximate the crystal graphs of level *l* representations of $U_q(\widehat{\mathfrak{sl}}(n))$. The identification is made between restricted paths for the RSOS models and highest weight vectors in the crystal graphs of tensor modules for $U_q(\widehat{\mathfrak{sl}}(n))$.

1. Introduction

1.1 R Matrices and Paths. The eminent role of the quantized enveloping algebras in solvable lattice models is widely known. The R matrices, which are the intertwiners of tensor product representations, give the Boltzmann weights of lattice models with commuting transfer matrices [1].

Consider $U_q(\widehat{\mathfrak{sl}}(n))$. Let (V, π) be the *l*-th symmetric tensor representation of $U_q(\mathfrak{sl}(n))$. We can extend this representations to a family of representations (V, π_x) of $U_q(\widehat{\mathfrak{sl}}(n))$ with an auxiliary parameter x. The R matrix R(x, y) is an element of $\operatorname{End}(V \otimes V)$ which intertwines two representations $(V \otimes V, \pi_x \otimes \pi_y)$ and $(V \otimes V, \pi_y \otimes \pi_x)$. Set

$$\mathscr{A}_{l}^{+} = \bigg\{ v = \sum_{i=0}^{n-1} v_{i} \epsilon_{i} \bigg| v_{i} \in \mathbb{Z}_{\geq 0}, \sum_{i=0}^{n-1} v_{i} = l \bigg\},$$

^{*} Partially supported by NSF grant MDA904-90-H-4039