Combinatorics of Representations of $\boldsymbol{U}_{\boldsymbol{q}}(\widehat{\mathfrak{s l}}(n))$ at $\boldsymbol{q}=\mathbf{0}$

Michio Jimbo ${ }^{1}$, Kailash C. Misra ${ }^{2 \star}$, Tetsuji Miwa ${ }^{3}$ and Masato Okado ${ }^{4}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606, Japan
${ }^{2}$ Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA
${ }^{3}$ Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan
${ }^{4}$ Department of Mathematical Science, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan

Received August 7, 1990

Abstract

The $q=0$ combinatorics for $U_{q}(\hat{\mathfrak{s} l}(n))$ is studied in connection with solvable lattice models. Crystal bases of highest weight representations of $U_{q}(\hat{\mathfrak{s l}}(n))$ are labelled by paths which were introduced as labels of corner transfer matrix eigenvectors at $q=0$. It is shown that the crystal graphs for finite tensor products of l-th symmetric tensor representations of $U_{q}(\mathfrak{s l}(n))$ approximate the crystal graphs of level l representations of $U_{q}(\hat{\mathfrak{s}}(n))$. The identification is made between restricted paths for the RSOS models and highest weight vectors in the crystal graphs of tensor modules for $U_{q}(\hat{\mathfrak{s l}}(n))$.

1. Introduction

1.1 R Matrices and Paths. The eminent role of the quantized enveloping algebras in solvable lattice models is widely known. The R matrices, which are the intertwiners of tensor product representations, give the Boltzmann weights of lattice models with commuting transfer matrices [1].

Consider $U_{q}(\hat{\mathfrak{s} l}(n))$. Let (V, π) be the l-th symmetric tensor representation of $U_{q}(\mathfrak{s l}(n))$. We can extend this representations to a family of representations $\left(V, \pi_{x}\right)$ of $U_{q}(\widehat{\mathfrak{s l}}(n))$ with an auxiliary parameter x. The R matrix $R(x, y)$ is an element of $\operatorname{End}(V \otimes V)$ which intertwines two representations $\left(V \otimes V, \pi_{x} \otimes \pi_{y}\right)$ and $\left(V \otimes V, \pi_{y} \otimes \pi_{x}\right)$. Set

$$
\mathscr{A}_{l}^{+}=\left\{v=\sum_{i=0}^{n-1} v_{i} \epsilon_{i} \mid v_{i} \in \mathbf{Z}_{\geqq 0}, \sum_{i=0}^{n-1} v_{i}=l\right\}
$$

[^0]
[^0]: * Partially supported by NSF grant MDA904-90-H-4039

