Commun. Math. Phys. 136, 35-41 (1991)

Exponential Decay of Green's Functions for a Class of Long Range Hamiltonians

Wei-Min Wang

Department of Physics, Princeton University, Princeton, NJ 08544, USA

Received April 25, 1990; in revised form June 18, 1990

Abstract. We consider a class of long range Hamiltonians with diagonal disorder on l^2 (Z). For any *ergodic* potential V with non-empty essential range, we prove the exponential decay of the Green's functions for energies in the essential range. If V is independent identically distributed, we obtain the exponential decay of the Green's functions for all coupling constant $\lambda > 0$. Moreover the Hamiltonian has only pure point spectrum.

1. Introduction

We consider a long range Hamiltonian with diagonal disorder. Let (Ω, P) be a probability space, $T^{j}(j \in \mathbb{Z})$ a one parameter group of ergodic measure preserving transformations acting on Ω ; f a measurable real-valued function on Ω , such that the distribution P^{f} of f has no point component: $P\{\omega | f(\omega) = E\} = 0$ for any E. Let the corresponding *ergodic* potential $V^{\omega}(j) = f(T^{j}\omega)$; we define H^{ω} on $l^{2}(\mathbb{Z})$ by:

$$H^{\omega} = \tilde{\Delta} + \lambda V^{\omega}, \tag{1.1}$$

where $\tilde{\Delta}$ is a long-range finite difference Laplacian:

$$\widetilde{\Delta}(m,n) = \frac{\alpha^{-|m-n|+1}}{1-\alpha^2} \quad (\alpha > 1),$$

 $(1/(1-\alpha^2))$ is just a normalizing factor), and λ is the coupling constant. (We will write V, H, instead of V^{ω} , H^{ω} for convenience.)

Clearly $\tilde{\Delta}$ is very different from the usual finite difference Laplacian Δ : $\Delta(m,n) = \delta(|m-n|-1)$, and is perhaps physically more realistic.

We are interested in the asymptotic behavior of the Green's functions for H. We show in the next section that H can be written as

$$H = \frac{1}{\Delta - (\alpha + \alpha^{-1})} + \lambda V.$$
(1.1a)