© Springer-Verlag 1991

Localization in the Ground State of the Ising Model with a Random Transverse Field

Massimo Campanino*, Abel Klein** and J. Fernando Perez***

Department of Mathematics, University of California, Irvine, Irvine, CA 92717, USA

Received March 21, 1990

Abstract. We study the zero-temperature behavior of the Ising model in the presence of a random transverse field. The Hamiltonian is given by

$$H = -J \sum_{\langle x,y \rangle} \sigma_3(x) \sigma_3(y) - \sum_x h(x) \sigma_1(x),$$

where J > 0, $x, y \in \mathbb{Z}^d$, σ_1 , σ_3 are the usual Pauli spin $\frac{1}{2}$ matrices, and $\mathbf{h} = \{h(x), x \in \mathbb{Z}^d\}$ are independent identically distributed random variables. We consider the ground state correlation function $\langle \sigma_3(x)\sigma_3(y)\rangle$ and prove:

1. Let d be arbitrary. For any m > 0 and J sufficiently small we have, for almost every choice of the random transverse field **h** and every $x \in \mathbb{Z}^d$, that

$$\langle \sigma_3(x)\sigma_3(y)\rangle \leq C_{x,\mathbf{h}}e^{-m|x-y|}$$

for all $y \in \mathbb{Z}^d$ with $C_{x,h} < \infty$.

2. Let $d \ge 2$. If J is sufficiently large, then, for almost every choice of the random transverse field \mathbf{h} , the model exhibits long range order, i.e.,

$$\overline{\lim_{|y|\to\infty}} \left\langle \sigma_3(x)\sigma_3(y) \right\rangle > 0$$

for any $x \in \mathbb{Z}^d$.

1. Introduction

Quantum spin systems with random parameters have been introduced to study the effects of impurities in several physical systems (see for example, Halperin, Lee

^{*} Permanent address: Dipartimento di Matematica, Universita di Bologna, p.zz.a S. Donato, 5, I-40126 Bologna, Italy

^{**} Partially supported by the NSF under grant DMS 8905627 and INT 8703059

^{***} Permanent address: Instituto de Física, Universidade de São Paulo, P.O. Box 20516, CEP 01498 São Paulo, Brazil. Partially supported by the CNP_q and FAPESP