Space-Dependent Dirac Operators and Effective Quantum Field Theory for Fermions ${ }^{\star}$

John Z. Imbrie ${ }^{1 \star \star}$, Steven A. Janowsky ${ }^{1 \star \star \star}$ and Jonathan Weitsman ${ }^{1,2 \star \star \star \star}$
${ }^{1}$ Harvard University, Departments of Mathematics and Physics, Cambridge, MA 02138, USA
${ }^{2}$ M.I.T., Department of Mathematics, Cambridge, MA 02139, USA

Received June 9, 1989; in revised form May 17, 1990

Abstract

For the operator $i \neq m(x)$, where $m(x)$ can change sign, we develop a cluster expansion for computing the determinant and Green's functions. We use a local chiral transformation to relate the space-dependent case to the ordinary Dirac operator.

1. Introduction

The study of multi-phase field theories with generalized Yukawa interactions provides a natural structure for studying Dirac operators with space-dependent mass. Different phases of such a model will have different effective fermion masses. If one attempts to analyze such a model via a cluster expansion, different cluster will be in different phases and have different masses for the fermions.

Our specific motivation for studying operators like $i \not \partial+m(x)$ comes from trying to understand the phase structure of two-dimensional Wess-Zumino models. While the single phase case has been studied [15] and much is known for the system in finite volume [9-12], the infinite volume multiphase problem remains unexplored.

A first step to understanding the behavior of the Wess-Zumino model is to study a simpler toy model with almost no bosonic field. By "almost no" field we mean that the only remnant of the boson is a restriction that each block of spacetime is in a particular phase. This results in the study of a Dirac operator $i \not \partial+m(x)$ in two dimensions where $m(x)$ takes on a small number of values.

Dirac Operators with Space Dependent Masses. To obtain a view of the technical

[^0]
[^0]: * Supported in part by National Science Foundation grant PHY/DMS 88-16214
 ** Alfred P. Sloan Foundation Fellow
 *** Supported in part by National Science Foundation grants DMS 90-08827 and DMS 88-58073
 **** Supported in part by National Science Foundation Mathematical Sciences Postdoctoral Research Fellowship DMS 88-07291

