Quantum \boldsymbol{R} Matrices Related to the Spin Representations of $\boldsymbol{B}_{\boldsymbol{n}}$ and $\boldsymbol{D}_{\boldsymbol{n}}$

Masato Okado
Department of Mathematical Science, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan

Received December 28, 1989

Abstract

We present the explicit form of the trigonometric R matrices related to the spin representations of the simple Lie algebras $X_{n}=B_{n}, D_{n}$. We conjecture that one dimensional configuration sums of the corresponding vertex models in the face formulation are the string functions of $X_{n}^{(1)}$ modules.

1. Introduction

The importance of quantum R matrices has been recognized widely these days because of its deep relationship with quantum groups, q-analysis, operator algebras, like invariants, conformal field theories, statistical mechanical models, etc. In constructing trigonometric R matrices, the quantized universal enveloping algebra $U_{q} \mathfrak{g}$ plays a significant role. In [1] V. G. Drinfeld constructed a "universal R matrix" $\mathscr{R} \in U_{q} \mathfrak{g} \otimes U_{q} \mathfrak{g}$. This, in principle, enables us to write down the form of the R matrix corresponding to an arbitrary pair of a nontwisted affine Lie algebra $\hat{\mathrm{g}}$ and an irreducible representation π of \mathfrak{g}. From the statistical mechanical point of view, each R matrix defines a solvable vertex model on the two dimensional square lattice. In order to carry out its analysis, we have to deal with the explicit form of the R matrix. So far, such explicit expressions have been obtained in the case of $\hat{\mathfrak{g}}=A_{1}^{(1)}, \pi=$ an arbitrary representation $[2,3]$ and in the case of $\hat{\mathfrak{g}}=A_{n}^{(1)}$, $B_{n}^{(1)}, C_{n}^{(1)}, D_{n}^{(1)}, \pi=$ the vector representation [4,5]. Very recently, an exceptional case $G_{2}^{(1)}$ is also treated in [6].

In [3] a method was initiated to construct the R matrices related to higher representations from the one related to a basic representation. This method is called the "fusion procedure." In the case of $A_{n}^{(1)}$, the key R matrix is the one corresponding to the vector representation. I. V. Cherednik worked out the fusion procedure in the elliptic parametrization [7]. When we consider the cases of $B_{n}^{(1)}$ and $D_{n}^{(1)}$, the R matrices corresponding to the spin representations are necessary for the fusion procedure. The purpose of this article is to give a concise form of the trigonometric R matrices related to the spin representations of B_{n} and D_{n}.

