Unitary Dressing Transformations and Exponential Decay Below Threshold for Quantum Spin Systems. Parts III and IV

Claudio Albanese* ** ***

Department of Mathematics, University of California, Los Angeles, CA 90024-1555, USA

Received August 21, 1989; in revised form March 20, 1989

Abstract. This is the continuation of a series of articles concerning a class of quantum spin systems with Hamiltonian operators of the form

$$H_{\lambda} = \sum_{x \in \Lambda} s_x + \sum_{\gamma_0 \subset \Lambda} \lambda^{|\gamma_0|_c - 1} t_{\gamma_0},$$

where Λ is a graph, λ is a small parameter and s_x has a gap ≥ 1 for all $x \in \Lambda \setminus \mathscr{S}$. In the singular set $\mathscr{S} \subset \Lambda$, the gap of s_x can be arbitrarily small. Part III is devoted to the proof of a preliminary result, while in Part IV we consider the case in which \mathscr{S} is a subset of finite density of Λ . This completes the first iteration step of the deterministic part of the proof of localization in the ground state of the random field quantum XY model.

Table of Contents

Part III. A New Representation with the Ground State of Compact Support	238
7. Introduction, Notations and Results	238
8. Effective Coupling of Law Energy Excitations	241
9. A Relative Boundedness Result	244
10. Recurrence Inequalities	248
11. Convergence of the Perturbative Expansion	251

^{*} Address after September 1989: Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA

^{**} Partially supported by the National Science Foundation under Grant No. DMS-88-06552 *** Address after September 1990: Department of Physics, Princeton University, P.O.B. 708, Princeton, NJ 08544, USA