Communications in Mathematical Physics © Springer-Verlag 1990

Crystal Base for the Basic Representation of $U_a(\hat{\mathfrak{sl}}(n))$

Kailash C. Misra¹ and Tetsuji Miwa²

¹ Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA

² Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan

Received February 9, 1990

Abstract. We show the existence of the crystal base for the basic representation of $U_q(\mathfrak{sl}(n))$ by giving an explicit description in terms of Young diagrams.

0. Introduction

In [5] Kashiwara introduces the notion of crystal base for integrable representations of $U_q(g)$, where g is any symmetrizable Kac-Moody Lie algebra. The crystal base has a simple structure at q = 0. Let $\{e_i, f_i, t_i^{\pm}\}$ be a set of generators of $U_q(g)$. Suppose M is an integrable $U_q(g)$ -module. Kashiwara [5] constructs certain operators \tilde{e}_i, \tilde{f}_i acting on M. These operators are obtained by modifying the simple root vectors e_i and f_i . When M is an irreducible highest weight module with highest weight vecctor u, define:

 $L = \sum A \tilde{f}_{i_1} \tilde{f}_{i_2} \cdots \tilde{f}_{i_k} u \subset M \tag{0.1}$

and

$$B = \{ v = \tilde{f}_{i_1} \tilde{f}_{i_2} \cdots \tilde{f}_{i_k} u \in L/qL | v \neq 0 \},$$

$$(0.2)$$

where $A \subset K = \mathbf{Q}(q)$ is the ring of rational functions in q without pole at q = 0. Kashiwara [5] conjectures that (L, B) satisfies the following crucial properties:

$$\tilde{e}_i L \subset L$$
 and $\tilde{f}_i L \subset L$, for all i , (0.3)

$$\tilde{e}_i B \subset B \cup \{0\}$$
 and $\tilde{f}_i B \subset B \cup \{0\}$, for all i , (0.4)

$$u = \tilde{e}_i v$$
 if and only if $v = \tilde{f}_i u$, for all *i* and $u, v \in B$. (0.5)

He proves his conjecture for $g = \mathfrak{sl}(n)$, $\mathfrak{o}(2n+1)$, $\mathfrak{sp}(2n)$ and $\mathfrak{o}(2n)$ and calls (L, B) the crystal base.

In this paper we prove this conjecture for the basic representation of $U_q(\hat{\mathfrak{sl}}(n))$ with highest weight Λ_0 ($\Lambda_0(t_i^{\pm}) = q^{\pm 1}\delta_{i,0}$). We start with the Fock space representation of $U_q(\hat{\mathfrak{sl}}(n))$ constructed by Hayashi [3]. We identify the Fock space \mathscr{F} with the space spanned by Young diagrams [4]. Then for each *i*, we decompose \mathscr{F} with respect to $U_q(\mathfrak{sl}(2))_{(i)}$ generated by $\{e_i, f_i, t_i^{\pm}\}$ (see, Theorem 3.1). This leads to the