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Abstract We compute the entropy hίύA(oίu) in the sense of Connes, Narnhofer and
Thirring of Bogoliubov automorphisms av of the CAR-algebra with respect to
invariant quasifree states ωA with 0 ̂  A ̂  1 having pure point spectrum.

1. Introduction

In their recent paper [3] Connes, Narnhofer, and Thirring extended the definition
of entropy for automorphisms of finite von Neumann algebras studied in [4] to
the case of automorphisms of C*-algebras invariant with respect to a given state.
In the present paper we shall compute this for Bogoliubov automorphisms of the
CAR-algebra with respect to invariant quasifree states. Recall, for more details see
Sect. 4, that if H is a complex Hubert space and / -> a(f) is a representation of H
in the CAR-algebra <$#(H) satisfying the canonical anticommutation relations then
each unitary operator U on H defines a Bogoliubov automorphism α^ of <stf(H)
by ociM/)) = <*(Vf). If AεB(H) satisfies O ^ Λ ^ l and AU=UA, then <xv is
invariant with respect to the (gauge invariant) quasifree state ωA defined by A. In
the case A=%1, i.e. ωA is the unique tracial state τ on stf(H\ then the entropy
hτ(oιv) is the same as that of the extension of α^/ to the GNS-representation of τ
as defined in [4]. A. Connes suggested to us that the formula for the entropy
should be

(1)

where m(U) is the multiplicity function of the absolutely continuous part Ua of I/,
a conjecture which initiated the present work. More generally, if Ua acts on the
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