Multichannel Nonlinear Scattering for Nonintegrable Equations***

A. Soffer¹*** and M. I. Weinstein²

¹ Department of Mathematics, Princeton University, Princeton: NJ 08544, USA

² Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

Received July 31, 1989; in revised form December 22, 1989

Abstract. We consider a class of nonlinear Schrödinger equations (conservative and dispersive systems) with localized and dispersive solutions. We obtain a class of initial conditions, for which the asymptotic behavior $(t \to \pm \infty)$ of solutions is given by a linear combination of nonlinear bound state (time periodic and spatially localized solution) of the equation and a purely dispersive part (decaying to zero with time at the free dispersion rate). We also obtain a result of asymptotic stability type: given data near a nonlinear bound state of the system, there is a nonlinear bound state of nearby energy and phase, such that the difference between the solution (adjusted by a phase) and the latter disperses to zero. It turns out that in general, the time-period (and energy) of the localized part is different for $t \to +\infty$ from that for $t \to -\infty$. Moreover the solution acquires an extra constant asymptotic phase $e^{i\gamma^{\pm}}$.

1. Introduction

This paper deals with the scattering theory of a class of conservative nonlinear dispersive equations admitting more than one channel. By this we mean that the asymptotic behavior is given by a linear combination of a localized (in space), periodic (in time) wave (solitary or standing wave) and a dispersive part. For nonlinear flows which are completely integrable (e.g. one-dimensional cubic nonlinear Schrödinger, Korteweg-de Vries equations), some analysis of the asymptotic system of, for example, localized part (solitons) plus dispersion can be carried out using the inverse scattering transform [G-G-K-M, Z-S, Lax, C-K]. The inverse scattering transform decouples the localized from the dispersive part.

^{*} This research was supported in part by grants from the National Science Foundation

^{**} The results of this paper were announced in a lecture (June, 1988) on which the Proceedings article [Sof-We] is based

^{***} A. Soffer is a Sloan Foundation Fellow