

Existence of Standing Waves for Dirac Fields with Singular Nonlinearities

Mikhael Balabane^{1,2}, Thierry Cazenave³ and Luis Vázquez⁴

¹ Département de Mathématiques, Université de Reims-Champagne-Ardennes, B.P. 347, F-51062 Reims Cedex, France

² CMA, École Normale Supérieure, 45, rue d'Ulm, F-75252 Paris Cedex 05, France

³ Analyse Numérique, Université Pierre et Marie Curie, 4, place Jussieu, F-75252 Paris Cedex 05, France

⁴ Departamento de Fisica Teorica, Facultad de Ciencias Fisicas, Universidad Complutense, E-28040 Madrid, Spain

Received July 10, 1989; in revised form February 2, 1990

Abstract. We prove the existence of stationary states for nonlinear Dirac equations of the form

$$i\sum_{\mu=0}^{3}\gamma^{\mu}\partial_{\mu}\psi - M\psi + F(\bar{\psi}\psi)\psi = 0, \qquad (E)$$

where M > 0 and F is a singular self-interaction. In particular, in the model case where $F(s) = -s^{-\alpha}$, for some $0 < \alpha < 1$, and for every $\omega > M$, there exists a solution of (E) of the form $\psi(t, x) = e^{i\omega t}\varphi(x)$, where $x_0 = t$ and $x = (x_1, x_2, x_3)$, such that φ has compact support. If $0 < \alpha < 1/3$, then φ is of class C^1 . If $1/3 < \alpha < 1$, then φ is continuously differentiable, except on some sphere $\{|x| = R\}$, where $|\nabla \varphi|$ is infinite.

1. Introduction

In this paper, we study the existence of stationary states for nonlinear Dirac equations of the form

$$i\sum_{\mu=0}^{3}\gamma^{\mu}\partial_{\mu}\psi - M\psi + F(\bar{\psi}\psi)\psi = 0.$$
(1.1)

We consider here the case where F is a singular self-interaction.

The notation is the following. $\psi: \mathbb{R}^4 \to \mathbb{C}^4$, $\partial_{\mu} = \partial/\partial x_{\mu}$, *M* is a positive constant, $\bar{\psi}\psi = (\gamma^0\psi, \psi)$, where (\cdot, \cdot) is the usual scalar product in \mathbb{C}^4 and the γ^{μ} 's are the 4 × 4 matrices of the Pauli–Dirac representation (see [14, 15, 17, 18]), given by

$$\gamma^{0} = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$$
 and $\gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{k} \\ -\sigma^{k} & 0 \end{pmatrix}$, for $k = 1, 2, 3,$