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Abstract. We consider discrete lattice gas models in a finite interval with
stochastic jump dynamics in the interior, which conserve the particle number,
and with stochastic dynamics at the boundaries chosen to model infinite particle
reservoirs at fixed chemical potentials. The unique stationary measures of these
processes support a steady particle current from the reservoir of higher chemical
potential into the lower and are non-reversible. We study the structure of the
stationary measure in the hydrodynamic limit, as the microscopic lattice size
goes to infinity. In particular, we prove as a law of large numbers that the
empirical density field converges to a deterministic limit which is the solution of
the stationary transport equation and the empirical current converges to the
deterministic limit given by Pick's law.

1. Introduction

As a common experience, the large scale properties of a system in a non-equilibrium
steady state are determined by the stationary solution of the relevant macroscopic
equation with appropriate boundary conditions. Just to recall a familiar example:
Let us consider a Rayleigh-Benard cell consisting of a liquid between two plates at
different temperatures, Tγ and T2. The temperature difference is assumed to be
sufficiently small so that heat is transported only diffusively and that the velocity
field vanishes. In such a situation the hydrodynamic equations have a unique
stationary solution with density ρ(z), velocity v = 0 and temperature Γ(z), O^zg/z,
7T(0) = 7i and T(h) = T2, where z is the direction of the temperature gradient.

From a microscopic point of view we may model the liquid as a collection of a
huge number of hard spheres (with a diameter of 1 A, say), whose time evolution is
governed by Newton's equation of motion. Within this framework, the steady state
is described by a probability measure on phase space. In principle, we know how
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