A Feynman-Kac Formula for the Quantum Heisenberg Ferromagnet. II

H. Hogreve ${ }^{1}$, W. Müller ${ }^{2}$, J. Potthoff ${ }^{3}$, and R. Schrader ${ }^{4}$
${ }^{1}$ Hahn-Meitner Institut Berlin, D-1000 Berlin
${ }^{2}$ Akademie der Wissenschaften der DDR, Berlin, German Democratic Republic
${ }^{3}$ Universität Bielefeld, Bielefeld, Federal Republic of Germany, and LSU at Baton Rouge, USA
${ }^{4}$ Freie Universität Berlin, D-1000 Berlin

Dedicated to Res Jost and Arthur Wightman

Abstract

This article continues the analysis of the first arcticle under the same title. Using methods of stochastic analysis we prove Feynman-Kac formulas for the relevant heat kernels. We also present classical limit theorems.

This paper is the second part of a work devoted to a probabilistic approach for the quantum Heisenberg ferromagnet relating this model to a Euclidean lattice field theory.

In Sect. 2 and 3 of the previous article heat kernel representations of the partition function were given. In Sect. 4 the resulting Euclidean field theoretic Lagrangian was calculated. Here, in Sect. 5 and 6, we formulate Feynman-Kac representations for the heat kernels involved, first for the one-lattice point theory and then for the full interacting theory on an arbitrary finite lattice. Our presentation is strongly influenced by Bismut's work on probabilistic proofs of index theorems [Bi2].

In Sect. 7 we present classical limit theorems for the purely bosonic sector of the theory.

We use the notations and results of [HMPS].

5. Feynman-Kac Formula for the One Lattice Point Theory

In this section we will establish a rigorous stochastic expression for the kernel of the semigroup

$$
\begin{equation*}
e^{-t\left\{\frac{1}{m} \bar{\square}-i d \pi^{2}(h)\right\}}, \tag{5.1}
\end{equation*}
$$

where $t>0$ and $h \in \mathbf{g}$. For simplicity we consider the case $m=1$. The general case $m>0$ can be obtained by the rescaling $t \rightarrow \frac{t}{m}, h \rightarrow h m$. The first step is to construct the stochastic process on $\bar{\Lambda}\left(\mathscr{L}^{\lambda}\right)$ that is generated by the (horizontal) Bochner Laplacian $-\left(\nabla^{\lambda}\right)^{2}$. The stochastic representation of the kernel (5.1) will then be

