# The Computation of Characteristic Classes of Lattice Gauge Fields 

Anthony V. Phillips ${ }^{1 \star}$ and David A. Stone ${ }^{2 \star \star}$<br>${ }^{1}$ State University of New York at Stony Brook, Stony Brook, NY 11784, USA<br>${ }^{2}$ Brooklyn College, City University of New York, Brooklyn, NY 11210, USA


#### Abstract

A $G L(p, \mathbf{C})$-valued lattice gauge field $\mathbf{u}$ on a simplicial complex determines a principal $G L(p, \mathbf{C})$-bundle $\xi$ if the plaquette products are sufficiently small with respect to the maximum distortion coefficient of the transporters. A representative cocycle $c_{q}$ for the $q^{\text {th }}$ Chern class of $\xi$ can be computed on each $2 q$-simplex $\sigma$ by taking $c_{q}(\sigma)$ to be the intersection number of a certain singular $2 q$-cube $M_{\sigma}$ with a Schubert-type variety $\Sigma_{q}$ in the space of all $p \times p$ matrices. This reduces to the solution of polynomial equations with coefficients coming from $\mathbf{u}$ and thus avoids numerical integration or cooling-type procedures. An application of this method is suggested for the computation of the topological charge of an $S U(3)$-valued lattice gauge field on a 4-complex.


## Introduction

This work grew out of our earlier research in the topology of lattice gauge fields [23,24], which in turn was inspired by the work of Martin Lüscher [17]. There we gave algorithms for the computation of the characteristic numbers of $U(1)$ and $S U(2)$-valued lattice gauge fields on triangulated 2 and 4-dimensional manifolds. Here we examine the problem of computing characteristic classes of lattice gauge fields with values in $G L(p, \mathbf{C})$, for arbitrary $p$, defined on simplicial complexes of arbitrary dimension. In particular this work could be used as the basis of a new algorithm for the evaluation of the topological charge of an $S U(3)$-valued lattice gauge field on a 4-dimensional complex, a problem that has recently been examined from a wide variety of angles $[3,7,8,10,13,14,15,22]$, some of them reviewed in [12] along with the physical context of the problem. In our $S U(2)$ work we were able to exploit the extremely simple geometry of the group: since geodesics on a 3 -sphere are its intersections with 2-planes in 4-space, most questions about relative

[^0]
[^0]:    * Partially supported by NSF grant DMS 8607168
    ** Partially supported by PSC-CUNY and by NSF grant DMS 8805485

