

Nuclear Maps and Modular Structures II: Applications to Quantum Field Theory

Detlev Buchholz,¹ Claudio D'Antoni^{2***} and Roberto Longo^{3*}

¹ II. Institut für Theoretische Physik, Universität Hamburg, D-2000 Hamburg 50, Federal Republic of Germany

² Dipartimento di Matematica, Università di Roma "La Sapienza", P.le A. Moro 5, I-00185 Roma, Italy

³ Dipartimento di Matematica, Università di Roma "Tor Vergata", Via Fontanile de Carcaricola, I-00133 Roma, Italy

Abstract. A correspondence between spectral properties of modular operators appearing in quantum field theory and the Hamiltonian is established. It allows to prove the "distal" split property for a wide class of models. Conversely, any model having this property is shown to satisfy the Haag–Swieca compactness criterion. The results lead to a new type of nuclearity condition which can be applied to quantum field theories on arbitrary space-time manifolds.

1. Introduction

The physical significance of the modular operators appearing in quantum field theory is still a mystery: given the von Neumann algebra $\mathscr{A}(\mathcal{O})$ of operators which are associated with a space-time region \mathcal{O} and given the vector Ω representing the vacuum state, the Tomita-Takesaki theory [3] provides us on the one hand with a one-parameter group of unitaries $\Delta^{ii}, t \in \mathbb{R}$ (the modular group) which induces automorphisms of $\mathscr{A}(\mathcal{O})$. Moreover, the restriction of the vacuum state to $\mathscr{A}(\mathcal{O})$ behaves like an equilibrium state under the action of these automorphisms (it satisfies the KMS-condition). These mathematical facts seem to suggest that the modular group is some kind of dynamics of an observer in the region \mathcal{O} .

On the other hand, all attempts to justify such a physical interpretation in general have failed so far. There is only a single, though important special case where this interpretation is known to be correct: if \mathcal{O} is a wedge-shaped region which is bounded by two characteristic planes, it can be shown that the corresponding modular group is the dynamics of a uniformly accelerated observer [21]. But for arbitrary regions such a clearcut interpretation is out of sight.

As a step towards a clarification of this point we exhibit in the present investigation a tight relation between spectral properties of the modular operators and the Hamiltonian H. Although our results do not solve the problem of the

^{*} Supported by the A. von Humboldt Stiftung, Bonn

^{**} Supported in part by Ministero della Pubblica Instruzione and CNR-GNAFA