Commun. Math. Phys. 129, 95-102 (1990)

Relating Microscopic and Macroscopic Parameters for a 3-Dimensional Random Walk*

F. Alberto Grünbaum

Department of Mathematics, University of California, Berkeley, CA 94720, USA

Abstract. We consider a particle undergoing a discrete random walk with killing. We relate the microscopic transition and killing probabilities to these same parameters at a macroscopic level. We find the appropriate scaling laws.

Communications in **Mathematical**

Physics © Springer-Verlag 1990

Tables of Contents

1.	Introduction						95
2.	Micro and Macroscopic Parameters						96
3.	The Doubling Formula.						98
4.	Iterating the Map T						99
	Intertwining Maps and Wave Operators.						

Introduction

Consider the unit cube \mathbb{C} in three-dimensional space. For any value of n = 0, 1, 2, ... we partition this unit cube \mathbb{C} into 8^n "little cubes" denoted by \mathbb{C}_n . These cubes are obtained by successive bisections of each of the sides of the unit cube and the sides of each \mathbb{C}_n has length $(1/2)^n$.

For a fixed value of n we consider a 2-step Markov process with state space given by the 8^n "little cubes" \mathbb{C}_n . The evolution of a "particle" in this discrete time process is as follows: at each site there is a probability v_n of being killed. If a particle is not killed at a site \mathbb{C}_n , then it makes a transition to one of its six neighbors with probabilities that depend on the way in which the particle arrived at the present state. These probabilities are f_n , b_n and s_n and they give the probability of a "forward transition," i.e. one that preserves the direction of the last transition, a "backward transition." i.e. one that reverses this direction or finally a "sideways transition." where a ninety degree turn (in any one of the four possible directions) with respect

^{*} Research partially supported by NSF under Grant DMS 87-20007 and AFOSR under contract AFOSR-88-0250