Random Hamiltonians Ergodic in All But One Direction

H. Englisch¹, W. Kirsch², M. Schröder¹, and B. Simon³

¹ NTZ, Karl-Marx-Universität, DDR-7010 Leipzig, German Democratic Republic ² Institut für Mathematik and SFB 237, Ruhr-Universität, D-4630 Bochum,

Federal Republic of Germany

³ Department of Mathematics, Physics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA

Abstract. Let $V_{\omega}^{(1)}$ and $V_{\omega}^{(2)}$ be two ergodic random potentials on \mathbb{R}^{d} . We consider the Schrödinger operator $H_{\omega} = H_{0} + V_{\omega}$, with $H_{0} = -\Delta$ and for $x = (x_{1}, ..., x_{d})$

 $V_{\omega}(x) = \begin{cases} V_{\omega}^{(1)}(x) & \text{if } x_1 < 0 \\ V_{\omega}^{(2)}(x) & \text{if } x_1 \ge 0 \end{cases}.$

We prove certain ergodic properties of the spectrum for this model, and express the integrated density of states in terms of the density of states of the stationary potentials $V_{\omega}^{(1)}$ and $V_{\omega}^{(2)}$. Finally we prove the existence of the density of surface states for H_{ω} .

1. Introduction

In this paper we consider Schrödinger operators $H_{\omega} = H_0 + V_{\omega}$ with random potential V_{ω} on $L^2(\mathbb{R}^d)$. The random potential V_{ω} we consider has different behavior in the left and right half space. More precisely, there are two ergodic random fields V_{ω}^+ and V_{ω}^- on \mathbb{R}^d such that V_{ω} agrees with V_{ω}^+ in one half space and with V_{ω}^- in the complementary half space. To be specific we assume $V_{\omega}(x) = V_{\omega}^+$ for $x_1 \ge 0$ and $V_{\omega}(x) = V_{\omega}^-(x)$ for $x_1 < 0$.

Thus V_{ω} is not an ergodic potential (unless V_{ω}^{\pm} happen to agree). Consequently, the general theory of ergodic potentials (see e.g. [4, 2, 10] and references therein) does not apply. For example, a priori the spectrum $\sigma(H_{\omega})$ may depend on ω . In fact, Molcanov and Seidel [15] consider the one dimensional case in detail. They prove that, in their special case, the spectrum $\sigma(H_{\omega})$ consists of the half line $[0, \infty)$ plus an additional isolated negative eigenvalue. This eigenvalue depends on the random parameters.

We will prove in the next section that in the higher dimensional case (d>1) the spectrum is non-random under very mild assumptions. The main difference between d=1 and d>1 lies in the "ergodicity" of the potential under shifts parallel