(C) Springer-Verlag 1990

Random Hamiltonians Ergodic in All But One Direction

H. Englisch ${ }^{1}$, W. Kirsch ${ }^{2}$, M. Schröder ${ }^{1}$, and B. Simon ${ }^{3}$
${ }^{1}$ NTZ, Karl-Marx-Universität, DDR-7010 Leipzig, German Democratic Republic
${ }^{2}$ Institut für Mathematik and SFB 237, Ruhr-Universität, D-4630 Bochum, Federal Republic of Germany
${ }^{3}$ Department of Mathematics, Physics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA

Abstract

Let $V_{\omega}^{(1)}$ and $V_{\omega}^{(2)}$ be two ergodic random potentials on \mathbb{R}^{d}. We consider the Schrödinger operator $H_{\omega}=H_{0}+V_{\omega}$, with $H_{0}=-\Delta$ and for $x=\left(x_{1}, \ldots, x_{d}\right)$ $$
V_{\omega}(x)=\left\{\begin{array}{lll} V_{\omega}^{(1)}(x) & \text { if } & x_{1}<0 \\ V_{\omega}^{(2)}(x) & \text { if } & x_{1} \geqq 0 \end{array} .\right.
$$

We prove certain ergodic properties of the spectrum for this model, and express the integrated density of states in terms of the density of states of the stationary potentials $V_{\omega}^{(1)}$ and $V_{\omega}^{(2)}$. Finally we prove the existence of the density of surface states for H_{ω}.

1. Introduction

In this paper we consider Schrödinger operators $H_{\omega}=H_{0}+V_{\omega}$ with random potential V_{ω} on $L^{2}\left(\mathbb{R}^{d}\right)$. The random potential V_{ω} we consider has different behavior in the left and right half space. More precisely, there are two ergodic random fields V_{ω}^{+}and V_{ω}^{-}on \mathbb{R}^{d} such that V_{ω} agrees with V_{ω}^{+}in one half space and with V_{ω}^{-}in the complementary half space. To be specific we assume $V_{\omega}(x)=V_{\omega}^{+}$for $x_{1} \geqq 0$ and $V_{\omega}(x)=V_{\omega}^{-}(x)$ for $x_{1}<0$.

Thus V_{ω} is not an ergodic potential (unless $V_{\omega}^{ \pm}$happen to agree). Consequently, the general theory of ergodic potentials (see e.g. $[4,2,10]$ and references therein) does not apply. For example, a priori the spectrum $\sigma\left(H_{\omega}\right)$ may depend on ω. In fact, Molcanov and Seidel [15] consider the one dimensional case in detail. They prove that, in their special case, the spectrum $\sigma\left(H_{\omega}\right)$ consists of the half line $[0, \infty)$ plus an additional isolated negative eigenvalue. This eigenvalue depends on the random parameters.

We will prove in the next section that in the higher dimensional case ($d>1$) the spectrum is non-random under very mild assumptions. The main difference between $d=1$ and $d>1$ lies in the "ergodicity" of the potential under shifts parallel

