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Abstract. We study the problem of finding the shortest loops with a given
holonomy. We show that the solutions are the trajectories of particles in
Yang—Mills potentials (Theorem 4), or, equivalently, the projections of
Kaluza-Klein geodesics (Theorem 2). Applications to quantum mechanics
(Berry’s phase, Sect. 3) and the optimal control of deformable bodies (Sect. 6)
are touched upon.
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1. The Problem and an Introduction

1.1 The Problem which we investigate is the isoholonomic problem: among all loops
with a fixed holonomy, find the loop of minimum length.

The data needed to formulate this problem are a principal bundle
n:Q—>X [1.1]

with connection A4, a Riemannian metric k on X, and a point x,eX at which the
loop and its holonomy are based. (The holonomy is called the Wilson loop integral,
or the path-ordered exponential of — A in the physics literature.) The structure
group of the bundle will be denoted by G. It is a Lie group which acts on Q on
the right, and such that X =~ Q/G.



