Inverse Scattering Transform for the Time Dependent Schrödinger Equation with Applications to the KPI Equation

Xin Zhou
Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA

Abstract

For the direct-inverse scattering transform of the time dependent Schrödinger equation, rigorous results are obtained based on an operator-triangular-factorization approach. By viewing the equation as a first order operator equation, similar results as for the first order $n \times n$ matrix system are obtained. The nonlocal Riemann-Hilbert problem for inverse scattering is shown to have solution.

1. Introduction

We study in this paper the direct-inverse scattering problem for the $1+1$ time dependent Schrödinger equation:

$$
\begin{equation*}
i \psi_{y}+\psi_{x x}=-u \psi \tag{1.1}
\end{equation*}
$$

for real or complex potentials u. This problem, besides being of independent physical interest, is connected with the Cauchy problem of the Kadomtsev-Petviashvili (I) (KPI) equation

$$
\begin{equation*}
\left(u_{t}+6 u u_{x}+u_{x x x}\right)_{x}=3 y_{y y} . \tag{1.2}
\end{equation*}
$$

It has been formally studied by Zakharov and Manakov [Z-M], [M], Fokas and Ablowitz $[\mathrm{F}-\mathrm{A}]$. For the rigorous theory, certain estimates for the direct scattering transform have been obtained by Segur [S]. The work [Z-M], [M] contains important ideas such as triangular factorization of operators and the derivation of the positivity of the $\bar{\partial}$-scattering data $I+\mathscr{F}$ (see (3.20)) from the unitarity of the physical scattering data $I+\mathscr{S}$ (see (3.5)), while the work [F-A] gives a different approach for deriving \mathscr{F} and constructs for the first time the lump solutions which are two dimensional soliton solutions. However, for the inverse scattering transform, even on the formal level, a satisfactory treatment has not yet been obtained (see [S] for the comments on [M]).

Our approach is based on viewing Eq. (1.1) as a first order operator equation in y (2.31). For the direct-inverse scattering problem, Eq. (1.1) behaves much more like a first order system than a one dimensional Schrödinger equation

