Commun. Math. Phys. 128, 319-332 (1990)

Classical Solutions of the Chiral Model, Unitons, and Holomorphic Vector Bundles

R. S. Ward

Department of Mathematical Sciences, University of Durham, South Road, Durham DH1 3LE, England

Abstract. This paper deals with classical solutions of the SU(2) chiral model on \mathbb{R}^2 , and of a generalized chiral model on \mathbb{R}^{2+1} . Such solutions are shown to correspond to certain holomorphic vector bundles over minitwistor space. With an appropriate boundary condition, the solutions (called 1-unitons in [9]) correspond to bundles over a compact 2-dimensional complex manifold, and the problem becomes one of algebraic geometry.

1. Introduction

Minitwistor space $T\mathbb{P}_1$ is a 2-dimensional complex manifold which was used by Hitchin [5, 6] in the construction of monopoles on 3-dimensional Euclidean space. The solutions of the Bogomolny equations for monopoles on \mathbb{R}^3 correspond to certain holomorphic vector bundles over $T\mathbb{P}_1$. However, by imposing a different "reality" condition on such vector bundles, one can generate the solutions of the hyperbolic version of the Bogomolny equations, i.e. solutions which live on (2+1)dimensional space-time \mathbb{R}^{2+1} . These equations form an integrable hyperbolic system, and they include, as special cases, such well-known soliton equations as the sine-Gordon, Korteweg-de Vries and nonlinear Schrödinger equations. So solutions of these correspond to holomorphic vector bundles over $T\mathbb{P}_1$; see [12] for more details.

The purpose of this paper is to deal with holomorphic vector bundles which extend to a certain compactification \mathbb{T} of $T\mathbb{P}_1$. This excludes, for example, those bundles which correspond to soliton solutions of the sine-Gordon equation. But it turns out to be the right sort of boundary condition for the chiral model in 2+1 dimensions. The hyperbolic Bogomolny equations referred to above can be rewritten as a chiral equation with torsion term, and the aim in this paper is to describe how solutions of this chiral equation correspond to (and can be generated from) vector bundles over $T\mathbb{P}_1$ or \mathbb{T} .

A chiral field is a map from \mathbb{R}^{2+1} into a Lie group G, satisfying a certain nonlinear equation. In the case of static (time-independent) fields, one has a map