On the Classical Limit of Berry's Phase Integrable Systems

J. Asch
Technische Universität Berlin, Fachbereich Mathematik, Ma7-1, Straße des 17. Juni 136, D-1000 Berlin 12

Abstract

Berry's Phase is given by integration of a characteristic two form. We consider integrable systems defined by Weyl quantized classical Hamiltonians. It is shown that the limit of \hbar / i times this two form is the curvature of the classical connection whose holonomy is the Hannay angles. A result of this type was derived by Berry [B2].

Introduction

Consider a quantum system whose dynamics is determined by a family of selfadjoint Hamiltonians on a Hilbert space depending smoothly on several parameters. Consider furthermore a region of energies such that the corresponding spectral subspace - defined by a projection P - also varies in a smooth manner.

Thus a vector bundle over the manifold of parameters is defined. As it is embedded in the trivial Hilbert bundle $P d$ is a natural connection on it $-d$ denotes differentiation with respect to the parameters. It is well known [K], [A-S-Y] that as the parameters are driven adiabatically slowly in time the dynamical evolution starting in the spectral subspace is essentially the parallel - adiabatic - movement induced by this connection.

Curvature and holonomy effects have gained considerable interest in chemistry and physics. This was initiated by the work of Mead-Truhlar [M-T], Berry [B] and Simon [S] who first recognized the geometrical meaning.

We are interested in the quantum two form $\operatorname{tr} P d P d P$ which represents the first Chern class of the bundle. Integrated over the interior of a contractible loop it gives Berry's Phase in the case of a line bundle.

Let the operators be given by quantization of classical Hamiltonians. All objects then depend on a semiclassical parameter \hbar. Consider a sequence of eigenvalues approaching a given classical energy as \hbar goes to zero and the corresponding eigenprojections P.

