Harish-Chandra Isomorphisms for Quantum Algebras

Toshiyuki Tanisaki

Department of Mathematics, College of General Education, Osaka University, Toyonaka 560, Japan

Abstract. The center of the quantum algebra is studied. Especially an analogue of the Harish-Chandra isomorphism is established.

1. Introduction

In the study of the quantum Yang-Baxter equation, Drinfel'd [3] and Jimbo [6] found a certain Hopf algebra, which is a quantization of the enveloping algebra of a symmetrizable Kac-Moody Lie algebra (The \mathfrak{sl}_2 case is due to Kulish-Reshetikhin and Sklyanin). The purpose of this paper is to investigate the structure of the center of this quantum algebra associated to a finite dimensional semisimple Lie algebra. Our main result is Theorem 2 below giving an analogue of the Harish-Chandra isomorphism ([5]).

Let $A = (a_{ij})_{1 \le i,j \le l}$ be a symmetrizable generalized Cartan matrix. This means that A is a matrix of integers such that $a_{ii} = 2$, $a_{ij} \le 0$ for $i \ne j$ and there exist positive integers d_1, \ldots, d_l satisfying $d_i a_{ij} = d_j a_{ji}$. We fix such d_1, \ldots, d_l . Let k be a field of characteristic zero. Choose a finite-dimensional k-vector space t_0 and elements $\alpha_1, \ldots, \alpha_l \in t_0^*, t_1, \ldots, t_l \in t_0$ satisfying the following conditions:

- (a) $\{\alpha_1, \ldots, \alpha_l\}$ is linearly independent,
- (b) $\{t_1, \ldots, t_l\}$ is linearly independent,
- (c) $\alpha_i(t_j) = d_i a_{ij} \ (i, j = 1, ..., l).$

The Kac-Moody Lie algebra g (see [8]) associated to A is the Lie algebra over k, generated by the k-vector space t_0 and the elements $e_1, \ldots, e_l, f_1, \ldots, f_l$ with the following fundamental relations:

$$[t, t'] = 0 \quad (t, t' \in \mathfrak{t}_0), \tag{1.1}$$

$$[t, e_i] = \alpha_i(t)e_i \quad (t \in t_0, i = 1, ..., l),$$
 (1.2)

$$[t, f_i] = -\alpha_i(t)f_i \quad (t \in t_0, i = 1, ..., l),$$
 (1.3)

$$[e_i, f_j] = \delta_{i,j} t_i / d_i \quad (i, j = 1, ..., l),$$
 (1.4)