Zeta Functions and Transfer Operators for Piecewise Monotone Transformations*

V. Baladi¹ and G. Keller^{2,**}

¹ Section de Mathématiques, Université de Genève, CH-1211 Geneva 24, Switzerland

² Institut für Angewandte Mathematik und SFB 123, Universität Heidelberg, D-6900 Heidelberg 1, Federal Republic of Germany

Abstract. Given a piecewise monotone transformation T of the interval and a piecewise continuous complex weight function g of bounded variation, we prove that the Ruelle zeta function $\zeta(z)$ of (T,g) extends meromorphically to $\{|z| < \theta^{-1}\}$ (where $\theta = \lim_{n \to \infty} ||g \circ T^{n-1} \cdots g \circ T \cdot g||_{\infty}^{1/n}$) and that z is a pole of ζ if and only if z^{-1} is an eigenvalue of the corresponding transfer operator \mathscr{L} . We do not assume that \mathscr{L} leaves a reference measure invariant.

1. Introduction and Statement of Results

Suppose $T:[0,1] \rightarrow [0,1]$ is piecewise monotone, i.e., there is a finite partition \mathscr{Z} of [0,1] into intervals such that $T_{|z}$ is strictly monotone and continuous for each $Z \in \mathscr{Z}$. For a function $f:[0,1] \rightarrow \mathbb{C}$, let

$$\operatorname{var}(f) = \sup\left\{\sum_{i=1}^{n} |f(a_i) - f(a_{i-1})| : n \ge 1, 0 \le a_0 < \dots < a_n \le 1\right\},\$$
$$\|f\|_{BV} = \operatorname{var}(f) + \sup(|f|),$$

and denote by $BV = \{f: [0, 1] \to \mathbb{C} \text{ such that } || f ||_{BV} < \infty \}$ the space of functions of bounded variation.

Given $g \in BV$, one can define the transfer operator

$$\mathcal{L}: BV \to BV, \quad \mathcal{L}f(x) = \sum_{y: T(y) = x} (f \cdot g)(y) = \sum_{Z \in \mathcal{Z}} (f \cdot g) \circ T_{|Z|}^{-1}(x)$$

and the Ruelle zeta function

$$\zeta(z) = \exp\left(\sum_{n=1}^{\infty} \frac{z^n}{n} \sum_{x=T^n x} g_n(x)\right),\,$$

^{*} Research partially supported by the Fonds National Suisse

^{**} Present address: Mathematisches Institut, Universität Erlangen-Nürnberg, D-8520 Erlangen, FRG