A Topological Characterization of Classical BRST Cohomology

José M. Figueroa-O'Farrill*

Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, NY 11794-3840, USA

Abstract. The recent identification of classical BRST cohomology with the "vertical cohomology" of a certain fibration is used to compute it in terms of the classical observables and the topology of the gauge orbits. When the gauge orbits are compact and orientable, a duality theorem is exhibited.

Introduction

The classical BRST cohomology for finite dimensional systems has recently been interpreted geometrically. Let (M, Ω) be a symplectic manifold and $\{\phi_i\}$ a set of first class constraints. Their zero locus, $M_0 = \bigcap_i \phi_i^{-1}(0)$, is a closed co-isotropic submanifold of M. The hamiltonian vector fields, $\{X_i\}$, associated to the constraints span the null directions of the restriction of Ω to M_0 . Since this distributions is involutive, M_0 is foliated by maximal connected submanifolds having the $\{X_i\}$ as their tangent vectors. If this foliation, \mathscr{F} , fibers, the space of leaves \widetilde{M} can be given a differentiable structure such that the canonical map, $\pi: M_0 \to \widetilde{M}$, sending each point in M_0 to the unique leaf it lies in, is a smooth surjection. Moreover \widetilde{M} inherits a symplectic structure $\widetilde{\Omega}$, making $(\widetilde{M}, \widetilde{\Omega})$ into a symplectic manifold. The passage from (M, Ω) to $(\widetilde{M}, \widetilde{\Omega})$ is known as the symplectic reduction of M by M_0 .

The tangent bundle of M_0 breaks up as $TM_0 = T\mathscr{F} \oplus N\mathscr{F}$, where $T\mathscr{F} = TM_0^{\perp}$ is the tangent space to the foliation and $N\mathscr{F}$ is the normal bundle to the foliation. Let $T^*\mathscr{F}$ and $N^*\mathscr{F}$ denote the cotangent and conormal bundles to the foliation, respectively. Under this split, the differential forms, $\Omega(M_0)$, on M_0 decompose as

$$\Omega(M_0) = \bigoplus_{p,q} \Omega^{p,q}(M_0), \qquad (1)$$

where $\Omega^{p,q}(M_0)$ is the space of smooth sections through the bundle

$$\wedge^{p} T^{*} \mathscr{F} \otimes \wedge^{q} N^{*} \mathscr{F} .$$
⁽²⁾

^{*} e-mail: figueroa@sunysbnp. BITNET, jmf@noether.UUCP