Commun. Math. Phys. 127, 169-179 (1990)

Time Boundedness of the Energy for the Charge Transfer Model

Ulrich Wüller

Department of Mathematics, University of Virginia, Charlottesville, VA 22903, USA

Abstract. The energy behavior of the time-dependent Schrödinger equation

$$i\frac{\partial}{\partial t}\psi = \frac{-1}{2m}\Delta\psi + \sum_{j=1}^{N}V_j(x-y_j(t))\psi$$

is discussed, where the $y_j(t)$ are trajectories of classical scattering. In particular, we prove that the energy cannot become arbitrarily large as $t \to \infty$.

1. Introduction and Results

The charge transfer model describes a system of one quantum particle, e.g., an electron, and N others, which can be treated classically because they have a much greater mass (see [1-5, 8-10]). We suppose that the trajectories $y_j(t), j = 1, ..., N$, of the heavy particles are given and cause a time-dependent potential for the first one. So we have to consider the Schrödinger equation

$$\frac{d}{dt}\psi(t) = -iH(t)\psi(t) \tag{1.1}$$

in the Hilbert space $L^2(\mathbb{R}^v)$, where $H(t) = H_0 + V(t)$, $H_0 = -\frac{1}{2m}\Delta$ and

$$V(t) = \sum_{j=1}^{N} V_j(x - y_j(t)).$$

In addition to the self-adjointness of all H(t), $t \in \mathbb{R}$, one needs some smoothness of V(t) for the existence of the time evolution. If the $y_j(t)$ are continuously differentiable and the $\nabla V_j(x)$ are H_0 -bounded, then the existence is well known (Theorem X.71 in [7]). This does not include the Coulomb potential $V_j(x) = |x|^{-1}$ for dimension v = 3, which is the most important in the charge transfer model. However, some recent papers ([5, 8, 11]) show that there also exists a time evolution for potentials $V_j(x)$ with singularities like $|x|^{-\frac{3}{2}+\varepsilon}$, $\varepsilon > 0$, v = 3.