The Universal R-Matrix for $U_{q} s l(3)$ and Beyond!

Nigel Burroughs*
Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge, England CB3 9EW

Abstract

The R-matrices for the quantised Lie algebras A_{n} are constructed through the quantum double procedure given by Drinfel'd [6]. The case of $U_{q} s l(3)$ is thoroughly analysed initially to demonstrate the more subtle points of the calculation. The ease of the calculation for A_{n} is very dependent on a choice of generators for the Borel subalgebra $U_{q} b_{+}$and its dual, and a certain ordering imposed on these generators which is related to the length of a certain word in the Weyl group.

Introduction

To every Lia algebra and Kac Moody algebra g there exists a unique Hopf algebra A; a one parameter deformation of the universal enveloping algebra of g. This is the quantisation of the algebra g, and was defined by Drinfel'd [6] and Jimbo [11]. In the terminology of [6], these Hopf algebras turn out to be (pseudo) quasi-triangular Hopf algebras, which means that there exists an element $R \in A \otimes A$, called the universal R-matrix, that satisfies certain properties. The recent interest in quantum groups and the associated quantised algebra appears to be based on two of these properties: the R-matrix is the quantisation of the classical r-matrix [2] associated with g, and R satisfies the quantum Yang Baxter equation. The former property is important in attempts to quantise Toda field theories and related systems, since the classical r-matrix defines the Poisson structure of the monodromy matrix [8]:

$$
\begin{equation*}
\{T \stackrel{\otimes}{,} T\}=[r, T \otimes T] \tag{1}
\end{equation*}
$$

where any variable dependence of the monodromy matrix T and classical r-matrix r (in some representation) has been suppressed. Quantisation is then achieved by interpreting T as a matrix of operators that satisfies an appropriate quantum level

[^0]
[^0]: * Supported by a SERC studentship

