# Quantal Problems with Partial Algebraization of the Spectrum 

M. A. Shifman and A. V. Turbiner<br>Institute of Theoretical and Experimental Physics, Moscow SU-117259, USSR


#### Abstract

We discuss a new class of spectral problems discovered recently which occupies an intermediate position between the exactly-solvable problems (e.g., harmonic oscillator) and all others. The problems belonging to this class are distinguished by the fact that a part of the eigenvalues and eigenfunctions can be found algebraically, but not the whole spectrum. The reason explaining the existence of the quasi-exactly-solvable problems is a hidden dynamical symmetry present in the hamiltonian. For one-dimensional motion this hidden symmetry is $S L(2, R)$. It is shown that other groups lead to a partial algebraization in multidimensional quantal problems. In particular, $S L(2, R) \times S L(2, R)$, $S O(3)$ and $S L(3, R)$ are relevant to two-dimensional motion inducing a class of quasi-exactly-solvable two-dimensional hamiltonians. Typically they correspond to systems in a curved space, but sometimes the curvature turns out to be zero. Graded algebras open the possibility of constructing quasi-exactlysolvable hamiltonians acting on multicomponent wave functions. For example, with a (non-minimal) superextension of $S L(2, R)$ we get a hamiltonian describing the motion of a spinor particle.


## 1. Introduction

Recent investigations [1-7] of the spectral problem of Schrödinger type have led to a surprising finding: a new type of problem has been discovered in which a part of the spectrum can be found by purely algebraic methods (quasi-exactly-solvable problems according to terminology of [4]). In the present paper we develop the approach proposed in $[2,3,6]$. The main idea lying in the basis of this approach is the existence of a hidden dynamical symmetry inherent to the hamiltonians of quasi-exactly-solvable type.

Any hamiltonian $H$ can obviously be represented as an infinite-dimensional hermitian matrix,

$$
H \Rightarrow\left[\begin{array}{ccccc}
h_{11} & h_{12} & \ldots & h_{1 n} & \ldots  \tag{1}\\
h_{21} & h_{22} & \ldots & h_{2 n} & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right] . .
$$

