Spectral Asymptotics for the Schrödinger Operator with Potential which Steadies at Infinity*

G. D. Raikov

Laboratory of Differential Equations in Physics and Technology, Institute of Mathematics, Bulgarian Academy of Sciences, P.O.Box 373, BG-1090 Sofia, Bulgaria

Abstract. We consider the discrete spectrum of the selfadjoint Schrödinger operator $A_h = -h^2 \Delta + V$ defined in $L^2(\mathbb{R}^m)$ with potential V which steadies at infinity, i.e. $V(x) = g + |x|^{-\alpha} f(1 + o(1))$ as $|x| \to \infty$ for $\alpha > 0$ and some homogeneous functions g and f of order zero. Let $\mathfrak{N}_h(\lambda)$, $\lambda \ge 0$, be the total multiplicity of the eigenvalues of A_h smaller than $M - \lambda$, M being the minimum value of g over the unit sphere S^{m-1} (hence, M coincides with the lower bound of the essential spectrum of A_h). We study the asymptotic behaviour of $\mathfrak{N}_1(\lambda)$ as $\lambda \downarrow 0$, or of $\mathfrak{N}_h(\lambda)$ as $h \downarrow 0$, the number $\lambda \ge 0$ being fixed. We find that these asymptotics depend essentially on the structure of the submanifold of S^{m-1} , where the function g takes the value M, and generically are nonclassical, i.e. even as a first approximation $(2\pi)^m \mathfrak{N}_h(\lambda)$ differs from the volume of the set $\{(x, \xi) \in \mathbb{R}^{2m} : h^2 |\xi|^2 + V(x) < M - \lambda\}$.

1. Introduction

Let $\mathfrak{A}_h \equiv -h^2 \varDelta + V$ be the Schrödinger operator with domain $C_0^{\infty}(\mathbb{R}^m)$, $m \ge 3$. Here h > 0 is a constant parameter, \varDelta is the Laplacian, and V is a real-valued potential which is supposed to possess the following properties:

i) $V \in L^{m/2}_{\text{loc}}(\mathbb{R}^m);$

ii) V steadies at infinity, i.e. there exist two continuous real-valued functions f and g over the unit sphere S^{m-1} and a positive number α such the asymptotic relation

$$\lim_{|x| \to \infty} |x|^{\alpha} (V(x) - g(\hat{x})) = f(\hat{x}), \ \hat{x} \equiv x/|x| ,$$

holds uniformly with respect to $\hat{x} \in S^{m-1}$;

Then \mathfrak{A}_h is symmetric and semibounded from below in $L^2(\mathbb{R}^m)$. Denote by A_h the selfadjoint Friedrichs extension of \mathfrak{A}_h .

^{*} Partially supported by Contract No. 52 with the Ministry of Culture, Science and Education