Braid Matrices and Structure Constants for Minimal Conformal Models

G. Felder ${ }^{1 \star, \star \star}$ J. Fröhlich ${ }^{2}$ and G. Keller ${ }^{2}$
${ }^{1}$ School of Mathematics, The Institute for Advanced Study, Princeton, NJ 08540, USA
${ }^{2}$ Theoretische Physik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland

Abstract

Using the Feigin-Fuchs representation of minimal conformal models in a form introduced recently by one of us, the braid group representation matrices, describing the analytic continuation properties of conformal blocks, are computed. In a suitable normalization, their matrix elements are shown to essentially factorize into pairs of Boltzmann weights of critical RSOS models in a certain limit of the spectral parameter. These Boltzmann weights are related to quantum group R-matrices by the vertex-SOS transformation. We show that the crossing symmetry of the four-point function in left-right symmetric models follows from a quantum group relation, also called crossing symmetry. This observation gives a simple way to evaluate the structure constants.

1. Introduction

In recent times, much study was devoted to the connection between conformal field theory and representations of the braid group [1-11]. The reasons for this interest are two-fold: First, understanding the braid group representation carried by the conformal blocks is necessary to complete the conformal bootstrap program [12] in the general case. Second, this method, possibly in connection with modular invariance, might ultimately lead to a classification of two-dimensional conformal theories, at least of rational theories.

Some time ago, Tsuchiya and Kanie [1] found a connection between the braid matrices describing the monodromy of conformal blocks of the fundamental field in the $S U(2)$ WZW model and the Temperley-Lieb-Jones algebra. The same structure was seen to arise [4] for the braid matrices of the $\phi_{(12)}$ field in minimal models [12]. These matrices are connected by the vertex-SOS transformation to the spin $\frac{1}{2} R$-matrices of exactly solvable vertex models in a certain limit of the parameters. By the fusion procedure, R-matrices corresponding to higher spin

[^0]
[^0]: * Supported by NSF grant DMS 8610730
 ** Address after March 1989: Theoretische Physik, ETH-Hönggerberg, 8093 Zürich, Switzerland

