Factorisation of Energy Dependent Schrödinger Operators: Miura Maps and Modified Systems

Marek Antonowicz* and Allan P. Fordy

Department of Applied Mathematical Studies and Centre for Nonlinear Studies, University of Leeds, Leeds LS29JT, UK

Abstract. We consider the energy dependent Schrödinger operator $\mathbb{IL} = \sum_{i=0}^{N} \lambda^i (\varepsilon_i \partial^2 + u_i)$, which we have previously shown to be associated with multi-Hamiltonian structures [2]. In this paper we use an unusual form of the Lax approach to derive by a *single construction* the time evolutions of the eigenfunctions of \mathbb{IL} , the associated Hamiltonian operators and the Hamiltonian functionals. We then generalise the well known factorisation of standard Lax operators to the case of energy-dependent operators. The simple product of linear factors is replaced by a λ -dependent quadratic form. We thus generalise the resulting construction of Miura maps and modified equations. We show that for some of our systems there exists a sequence of N such modifications, the r^{th} modification possessing (N-r+1) Hamiltonian structures.

1. Introduction

In a number of recent papers [1–4] we discussed the two generalised Schrödinger equations:

$$L_1 \psi \equiv \left(\sum_{0}^{N-1} \lambda^i (\varepsilon_i \partial^2 + u_i)\right) \psi = \lambda^N \psi , \qquad (1.1a)$$

$$L_2 \psi \equiv \left(\partial^2 + \sum_{i=1}^{N} u_i \lambda^i\right) \psi = a^2 \psi, \qquad (1.1b)$$

where a is a constant. We have shown that the isospectral flows of each of these spectral problems possess (N+1) compatible Hamiltonian structures $\mathbf{B}_0, \dots, \mathbf{B}_N$. When N=1 these spectral problems give rise respectively to the KdV and Harry

^{*} On leave of absence from Institute of Theoretical Physics, Warsaw University, Hoza 69, PL-00-681 Warsaw, Poland (present address)